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Abstract

Face modification systems using deep learning have be-
come increasingly powerful and accessible. Given images
of a person’s face, such systems can generate new images
of that same person under different expressions and poses.
Some systems can also modify targeted attributes such as
hair color or age. This type of manipulated images and
video have been coined Deepfakes. In order to prevent a
malicious user from generating modified images of a per-
son without their consent we tackle the new problem of gen-
erating adversarial attacks against such image translation
systems, which disrupt the resulting output image. We call
this problem disrupting deepfakes. Most image translation
architectures are generative models conditioned on an at-
tribute (e.g. put a smile on this person’s face). We are first
to propose and successfully apply (1) class transferable ad-
versarial attacks that generalize to different classes, which
means that the attacker does not need to have knowledge
about the conditioning class, and (2) adversarial train-
ing for generative adversarial networks (GANs) as a first
step towards robust image translation networks. Finally,
in gray-box scenarios, blurring can mount a successful de-
fense against disruption. We present a spread-spectrum ad-
versarial attack, which evades blur defenses.

1. Problem Definition

Advances in image translation using generative adver-
sarial networks (GANs) have allowed the rise of face ma-
nipulation systems that achieve impressive realism. Some
face manipulation systems can create new images of a per-
son’s face under different expressions and poses [15, 23].
Other face manipulation systems modify the age, hair color,
gender or other attributes of the person [4, 5].

Given the widespread availability of these systems, ma-
licious actors can modify images of a person without their
consent. There have been occasions where faces of celebri-
ties have been transferred to videos with explicit content
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Figure 1. Deepfake disruption: a real example. After applying
an imperceptible filter on the image using our disruption, the out-
put of the face manipulation system (StarGAN [4]) is successfully
disrupted.
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without their consent and companies such as Facebook have
banned uploading modified pictures and video of people [1].

One way of mitigating this risk is to develop systems that
can detect whether an image or video has been modified
using one of these systems. There have been recent efforts
in this direction, with varying levels of success [19, 20].

There is work showing that classifier deep neural net-
works are vulnerable to adversarial attacks [16, 7, 12, 14,

, 13, 11], where an attacker applies imperceptible per-
turbations to an image causing it to be incorrectly classi-
fied. Generative neural networks are also susceptible to at-
tacks [17, 8, 6, 2]. We distinguish different attack scenarios.
In a white-box scenario the attacker has perfect knowledge
of the architecture, model parameters and defenses in place.
In a black-box scenario, the attacker is only able to query the
target model for output labels for chosen inputs. There are
several different definitions of gray-box scenarios. In this
work, a gray-box scenario denotes perfect knowledge of the
model and parameters, but ignorance of the pre-processing
defense mechanisms in place (such as blurring). In this
work, we focus on white-box and gray-box settings.

Another way of combating malicious actors is by dis-
rupting the deepfaker’s ability to generate a deepfake. In
this work we propose a solution by adapting traditional ad-
versarial attacks that are imperceptible to the human eye in
the source image, but interfere with translation of this image
using image translation networks. A successful disruption
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Figure 2. An example of our deepfake disruptions on StarGAN [4]
and GANimation [|5]. Some image translation networks are more
prone to disruption.

corresponds to the generated image being sufficiently de-
teriorated such that it has to be discarded or such that the
modification is perceptually evident. We present a formal
and quantifiable definition of disruption success in Section
2. An illustration of our method lies in Figure 1 and we
present example disruptions in Figure 2.

Most facial manipulation architectures are conditioned
both on the input image and on a target conditioning class.
One example, is to define the target expression of the gen-
erated face using this attribute class (e.g. put a smile on
the person’s face). In this example, if we want to prevent
a malicious actor from putting a smile on the person’s face
in the image, we need to know that the malicious actor has
selected the smile attribute instead of, for instance, eye clos-
ing. In this work, we are first to formalize the problem of
disrupting class conditional image translation, and present
two variants of class transferable disruptions that improve
generalization to different conditioning attributes.

Blurring is a broken defense in the white-box scenario,
where a disruptor knows the type and magnitude of pre-
processing blur being used. Nevertheless, in a real situa-
tion, a disruptor might know the architecture being used yet
ignore the type and magnitude of blur being used. In this
scenario the efficacy of a naive disruption drops dramati-
cally. We present a novel spread-spectrum disruption that
evades a variety of blur defenses in this gray-box setting.

In summary:

e We present baseline methods for disrupting deepfakes
by adapting adversarial attack methods to image trans-
lation networks. Previous and concurrent work [22,
18] do not tackle the following problems.

e We are the first to address disruptions on conditional
image translation networks. We propose and evaluate
novel disruption methods that transfer from one condi-
tioning class to another.

e We are the first to propose and evaluate adversarial
training for generative adversarial networks. Our novel

G+D adversarial training alleviates disruptions in a
white-box setting.

e We propose a novel spread-spectrum disruption that
evades blur defenses in a gray-box scenario.

2. Method

We describe methods for image translation disruption
(Section 2.1), our proposed conditional image translation
disruption techniques (Section 2.2), our proposed adversar-
ial training techniques for GANs (Section 2.3) and our pro-
posed spread-spectrum disruption (Section 2.4).

2.1. Image Translation Disruption

Similar to an adversarial example, we want to generate a
disruption by adding a human-imperceptible perturbation n
to the input image:

&=zt ()

where  is the generated disrupted input image and x is the
input image. By feeding the original image or the disrupted
input image to a generator we have the mappings G(x) = y
and G(&) = g, respectively, where y and ¢ are the trans-
lated output images and G is the generator of the image
translation GAN.

We consider a disruption successful when it introduces
perceptible corruptions or modifications onto the output y
of the network leading a human observer to notice that the
image has been altered and therefore distrust its source.

We operationalize this phenomenon. Adversarial attack
research has focused on attacks showing low distortions us-
ing the LY, L? and L> distance metrics. The logic behind
using attacks with low distortion is that the larger the dis-
tance, the more apparent the alteration of the image, such
that an observer could detect it. In contrast, we seek to
maximize the distortion of our output, with respect to a well-
chosen reference r.

max L(G(x +n),r),
n

subject to ||]]o <€, (2)

where € is the maximum magnitude of the perturbation and
L is a distance function. If we pick r to be the ground-truth
output, r = G(x), we get the ideal disruption which aims
to maximize the distortion of the output.

We can also formulate a fargeted disruption, which
pushes the output g to be close to 7:

subject to ||1]]c < €.
3)

Note that the ideal disruption is a special case of the tar-
geted disruption where we minimize the negative distortion
instead and select » = G(x). We can thus disrupt an image
towards a target or away from a target.

n =argmin L(G(x +n), ),
n
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Figure 3. Equivalence scale between Lz and L; distances and
qualitative distortion on disrupted StarGAN images. We also show
the original image and output with no disruption. Images with
L2 > 0.05 have very noticeable distortions.

We can generate a targeted disruption by adapting well-
established adversarial attacks: FGSM, I-FGSM, and PGD.
Fast Gradient Sign Method (FGSM) [7] generates an attack
in one forward-backward step, and is adapted as follows:

n = esign[Va L(G(x), 7], S

where € is the size of the FGSM step. Iterative Fast Gradient
Sign Method (I-FGSM) [9] generates a stronger adversarial
attack in multiple forward-backward steps. We adapt this
method for the targeted disruption scenario as follows:

& = clip(Z:—1 — asign[VzL(G(Z:-1),7)]), (5)

where a is the step size and the constraint ||Z — x||oc < €is
enforced by the clip function. For disruptions away from the
target r instead of fowards r, using the negative gradient of
the loss in the equations above is sufficient. For an adapted
Projected Gradient Descent (PGD) [10], we initialize the
disrupted image &, randomly inside the e-ball around x and
use the [-FGSM update function.

2.2. Conditional Image Translation Disruption

Many image translation systems are conditioned not only
on the input image, but on a target class as well:

y=G(zx,c), (6)

where z is the input image, c is the target class and y is the
output image. A target class can be an attribute of a dataset,
for example blond or brown-haired.

A disruption for the data/class pair (x, ¢;) is not guaran-
teed to transfer to the data/class pair (x,c;) when i # j.
We can define the problem of looking for a class transfer-
able disruption as follows:

n = argmin E.[L(G(x+n, c),r)],
n

)

subject to ||n]|oo < €.

We can write this empirically as an optimization problem:
n = arg min Z[L(G(:c+n, c),r)], subjectto ||n]||e < €.
n c
®)

Iterative Class Transferable Disruption In order to
solve this problem, we present a novel disruption on class
conditional image translation systems that increases the
transferability of our disruption to different classes. We per-
form a modified I-FGSM disruption:

& = clip(Zi—1 — asign[VzL(G(Z1-1,¢ck),7)]).  (9)

We initialize £ = 1 and increment k at every iteration, until
we reach k = K where K is the number of classes. We
then reset k = 1.

Joint Class Transferable Disruption We propose a dis-
ruption which seeks to minimize the expected value of the
distance to the target r at every step t. For this, we compute
this loss term at every step of an I-FGSM disruption and use
it to inform our update step:

& = clip(Z:—1 — a sign[Vz Z L(G(&¢-1,¢),71)]).
’ (10)
2.3. GAN Adversarial Training

Adversarial training for classifier deep neural networks
was proposed by Madry et al. [10]. It incorporates strong
PGD attacks on the training data for the classifier. We pro-
pose the first adaptations of adversarial training for gener-
ative adversarial networks. Our methods, described below,
are a first step in attempting to defend against image trans-
lation disruption.

Generator Adversarial Training A conditional image
translation GAN uses the following adversarial loss:

L = Eqg [log D(z)] + Eqg cllog (1 — D(G(x, )], (11)

where D is the discriminator. In order to make the generator
resistant to adversarial examples, we train the GAN using
the modified loss:

L = Eqg [log D(@)] + Eqg,cnllog (1 = D(G(z +n,¢)))].
(12)

Generator+Discriminator (G+D) Adversarial Training
Instead of only training the generator to be indifferent to
adversarial examples, we also train the discriminator on ad-
versarial examples:

L=Egzn, [log D(x +m1)] +

13
Es.commsl0g (1 — D(G( +1m2,¢) + 1))



PGD
Architecture (Dataset) Lt L? % dis.
StarGAN (CelebA) 1.119 1479 100%
GANimation (CelebA) 0.139 0.044 304%
GANimation (CelebA, e = 0.1) | 0.190 0.077 83.7%
pix2pixHD (Cityscapes) 0.922 1.084 100%
CycleGAN (Horse) 0402 0.253 100%
CycleGAN (Monet) 0.881 0.898 100%

Table 1. Comparison of L' and L? pixel-wise errors, as well as
the percentage of disrupted images (% dis.) for different disrup-
tion methods on different facial manipulation architectures and
datasets. All disruptions use € = 0.05 unless noted. We notice
that strong disruptions are successful on all tested architectures.

2.4. Spread-Spectrum Evasion of Blur Defenses

Blurring can be an effective test-time defense against dis-
ruptions in a gray-box scenario, where the disruptor ignores
the type or magnitude of blur being used. In order to suc-
cessfully disrupt a network in this scenario, we propose a
spread-spectrum evasion of blur defenses that transfers to
different types of blur. We perform a modified I-FGSM up-
date

&, = clip(Z,—1 — e sign[Vz L(fr(G(Z1-1)),7)]), (14)

where fj is a blurring convolution operation, and we have
K different blurring methods with different magnitudes and
types. We initialize £ = 1 and increment k at every iteration
of the algorithm, until we reach k = K where K is the total
number of blur types and magnitudes. We then reset k = 1.

3. Experiments

In this section we demonstrate that our proposed image-
level FGSM, I-FGSM and PGD-based disruptions are able
to disrupt different recent image translation architectures
such as GANimation [15], StarGAN [4], pix2pixHD [21]
and CycleGAN[24]. We show that we can attack several
different architectures in Table 1. For reference, in Figure
3 we show qualitative examples of differing L? distortion
levels. In Table 2, we show that our image-level disruption
is superior than adapted related work. In Table 3 and Figure
4, we demonstrate that both our class transferable disrup-
tions are able to successfully transfer to different condition-
ing classes. In Table 4, we show that our proposed G+D
adversarial training is most effective at alleviating disrup-
tions, although strong disruptions are able to overcome this
defense. G+D adversarial training is a first step towards
robust image translation architectures. Finally, in Figure 5
we show that our spread-spectrum adversarial disruption
effectively evades blur defenses in a gray-box scenario.

Original  Non-disrupted Correct Incorrect Iterative Class Joint Class
Image Output Class Class Transferable Transferable

Figure 4. Examples of our class transferable disruptions. (a) In-
put image. (b) Ground truth GANimation output without disrup-
tion. (c) Disruption using the correct Action Unit (AU) correctly is
successful. (d) Disruption with an incorrect target AU is not suc-
cessful. (e) Our iterative class transferable disruption and (f) joint
class transferable disruption are able to transfer across different
AUs and successfully disrupt the deepfake generation.

Kos et al. [8]
Layer 4 5 6 7

Lt ‘0.671 0.661 0.622 0.573 | 1.066

‘ Ours

L? 0.656 0.621 0.558 0.478 | 1.365

Table 2. Comparison of our image-level PGD disruption with an
adapted feature-level disruption from Kos er al. [8] on StarGAN.

! L? % dis.

Incorrect Class 0.144 0.053  45.7%
Iterative Class Transferable | 0.171 0.075 75.6%
Joint Class Transferable 0.157 0.062 53.8%
Correct Class 0.166  0.071  68.7%

Table 3. Class transferability results for our proposed disruptions.
This disruption seeks maximal disruption in the output image. We
present the distance between the ground-truth non-disrupted out-
put and the disrupted output images, higher distance is better.

PGD
Defense Lt L? % dis.
No Defense 0.863 0.981 100
Blur 0.279 0.133 89.2
Adv. G. Training 0.319 0.186 952
Adv. G+D Training 0.281 0.136 87.6
Adv. G. Train. + Blur 0.224 0.099 61.2
Adv. G+D Train. + Blur | 0.184 0.062 37.2

Table 4. Disruptions on StarGAN with different defenses.
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Figure 5. Proportion of disrupted images (L? > 0.05) for different
blur evasions under different blur defenses.
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