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Abstract

Deep neural networks have been shown to be fooled
rather easily using adversarial attack algorithms. Practi-
cal methods such as adversarial patches have been shown
to be extremely effective in causing misclassification. How-
ever, these patches are highlighted using standard network
interpretation algorithms, thus revealing the identity of the
adversary. We show that it is possible to create adversarial
patches which not only fool the prediction, but also change
what we interpret regarding the cause of the prediction.
Moreover, we introduce our attack as a controlled setting
to measure the accuracy of interpretation algorithms. We
show this using extensive experiments for Grad-CAM inter-
pretation that transfers to occluding patch interpretation as
well. We believe our algorithms can facilitate developing
more robust network interpretation tools that truly explain
the network’s underlying decision making process.

1. Introduction
Deep learning has achieved great results in many do-

mains including computer vision. However, it is still far
from being deployed in many real-world applications due
to reasons including:
(1) Lack of Explainability: The goal of Explainable AI
is to develop reliable interpretation algorithms that explain
the underlying decision making process of deep networks.
Such algorithms are challenging to design and considerable
work [19, 23, 18] has been done to describe local explana-
tions - explaining the model’s output for a given input [2].
(2) Adversarial examples: Deep neural networks have
been shown to be vulnerable to adversarial examples [21,
6, 15, 12], which could be used to fool AI algorithms when
deployed in real-world applications [16, 20]. These have
also been extended to interpretation algorithms [9, 11, 1].

In this paper, we design adversarial attack algorithms
that not only fool the network prediction but also fool the
network interpretation. Our main goal is to utilize such at-
tacks as a tool to investigate the reliability of network inter-
pretation algorithms.

*Equal contribution

Reliability of network interpretation: To study the relia-
bility of the interpretation in highlighting true cause of the
prediction, we use the adversarial patch method [3] to de-
sign a controlled adversarial attack setting where the adver-
sary changes the network prediction by manipulating only a
small region of the image. Hence, we know that the cause of
the wrong prediction should be inside the patch. We show
that it is possible to optimize for an adversarial patch that at-
tacks the prediction without being highlighted by the inter-
pretation algorithm as the cause of the wrong prediction. In
this paper, we choose to study the correctness of Grad-CAM
[18], a well-known interpretation algorithm which performs
well on sanity check [1] and show that our method transfers
to other interpretation algorithms as well.

We show an illustration of our work in Figure 1. We
learn the patch by adding a new term in the optimization of
adversarial patches that suppresses Grad-CAM activation at
the location of the patch while still encouraging the wrong
prediction (target category). The observation that Grad-
CAM does not highlight the patch pixels for our adversarial
patch reveals that Grad-CAM is not reliably highlighting
the source of prediction. Note that in this setting, the tar-
get category is randomly chosen by the adversary from all
possible wrong categories. We believe this shows that the
Grad-CAM algorithm is not necessarily showing the true
cause of the prediction.

Ghorbani et al. [5] introduced adversarial perturbations
that result in the same predicted label, yet have very differ-
ent interpretations. However, in this setting, the adversar-
ial image after perturbation can have image regions which
correspond to stronger features for the same predicted label
and as a result lead to different interpretations by dominat-
ing the prediction score. This is also noted in the discussion
section in [5]. Our work mitigates this concern by design-
ing a controlled setting using adversarial patches where the
adversary is restricted to a small region of the image. We
believe our algorithms can be used as a form of evaluation
for future interpretation algorithms.

Our key contributions are summarized as follows:
(1) We introduce a novel algorithm to construct adver-

sarial patches which fool both the classifier and the inter-
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Figure 1: Our modified attack algorithm goes beyond fooling the final prediction by also fooling the Grad-CAM visualization. The original
image (left) is correctly classified as “French Bulldog”. On the top row, a targeted adversarial patch has successfully changed the prediction
to “Soccer Ball”. In the bottom row, our adversarial patch algorithm, not only changes the prediction to “Soccer Ball”, but also does it in a
way that Grad-CAM does not highlight the pixels inside the patch. Here, Grad-CAM visualization is done for “Soccer Ball” category.

pretation of the resulting category.
(2) With extensive experiments, we show that our

method (a) generalizes from Grad-CAM to Occluding Patch
[22], another interpretation method, (b) generalizes to un-
seen images (universal), (c) is able to fool GAIN [14], a
model specifically trained with interpretation supervision.

(3) We use these attacks as a tool to assess the reliability
of Grad-CAM, a popular network interpretation algorithm.
This suggests that the community needs to develop more
robust interpretation algorithms possibly using our tool as
an evaluation method.

2. Method
In our work we focus on Grad-CAM [18] for designing

our algorithms and then, show that our results generalize to
other interpretation algorithms as well.
Background on Grad-CAM visualization: For a given
model (e.g. VGG) and a category c, Grad-CAM is used
to highlight the image regions responsible for the model’s
classification decision as category c. This is done by con-
sidering the output of a convolutional layer, e.g. conv5 and
computing the derivative of the output yc w.r.t. these acti-
vations. We then take the mean over the spatial locations
to obtain the gradient-weighted importance of each filter of
the convolutional layer:
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where Ak
ij is the activation at filter k for spatial location

(i; j) and Z is a normalizer. Then we calculate the interpre-
tation (heatmap) as the weighted sum of activations of the
convolutional layer discarding the negative values:
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We then normalize the heatmap: Ĝc :=
Gc

jGcj1

Background on adversarial patches: Consider an input
image x and a predefined constant binary mask m that is 1
on the location of the patch (top left corner in the experi-
ments of Figure 1) and 0 everywhere else. We want to find
an adversarial patch z that changes the output of the net-
work to category t when pasted on the image, so we solve:

z = arg min
z

‘ce(x� (1�m) + z �m; t)

where ‘ce(:; t) is the cross entropy loss for the target cat-
egory t and � is the element-wise product. Note that for
simplicity of the notation, we assume z has the same size as
x, but only the patch location is involved in the optimiza-
tion. This results in adversarial patches similar to [3].

2.1. Fooling interpretation with targeted patches

We now build upon the Grad-CAM method and adver-
sarial patches explained in the preceding section to design
our controlled setting that lets us study the reliability of net-
work interpretation algorithms. As shown in Figure 1, when
an image is attacked by an adversarial patch, Grad-CAM of
the target category (wrong prediction) can be used to inves-
tigate the cause of the misclassification. It highlights the
patch very strongly revealing the cause of the attack. This
is expected as the adversary is restricted to perturbing only
the patch area and the patch is the cause of the final mis-
classification towards target category.

In order to hide the adversarial patch in the interpretation
of the final prediction, we add an additional term to our loss
function while optimizing the patch such that the heatmap
of the Grad-CAM interpretation at the patch location m is
suppressed. Hence, assuming the perturbed image
~x = x0 � (1�m) + z �m, we optimize:

arg min
z

h
‘ce(~x; t) + �

X
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�
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(1)

where t is the target category and � is the hyper-parameter



to trade-off the effect of two loss terms. We choose the tar-
get label randomly across all classes excluding the original
prediction similar to “step rnd” method in [13].

To optimize the above loss function, we use an iterative
approach similar to projected gradient decent (PGD) algo-
rithm [15]. We initialize z randomly and iteratively update

it by: zn+1 = zn � �Sign(
@‘

@z
) with learning rate �. At

each iteration, we project z to the feasible region by clip-
ping it to the dynamic range of image values.

We argue that if this method succeeds in fooling the
Grad-CAM to not highlight the adversarial patch location,
it means the Grad-CAM algorithm is not showing the true
cause of the attack since we know the attack is restricted to
the patch location.

2.2. Non-targeted patches

A similar approach can be used to develop a non-targeted
attack by maximizing the cross entropy loss of the correct
category. This is a weaker attack since the adversary has no
control over the category predicted after adding the patch.
In this case, our optimization problem becomes:

arg min
z

h
max(0;M � ‘ce(~x; c)) + �

X
ij

�
Ĝa(~x)�m

�i
where c is the predicted category for the original image,
a = arg maxk y(k) is the top prediction at every iteration,
and y(k) is the logit for category k. Since cross entropy
loss is not upper-bounded, it can dominate the optimization,
so we use contrastive loss [7] to ignore cross entropy loss
when the probability of c is less than the chance level, thus
M = �log(p0) where p0 is the chance probability (e.g.,
0.001 for ImageNet). Note that the second term is using the
interpretation of the current top category a.

3. Experiments
We perform our experiments in two different bench-

marks. We use VGG19 network with batch normalization
and the ImageNet [4] dataset for these experiments.

Then to evaluate our attack in a more challenging set-
ting, we use GAINext model from [14] which is based on
VGG19 (without batch normalization), but is specifically
trained with supervision on the network attention to provide
more accurate interpretation. We use PASCAL VOC-2012
dataset for these experiments since GAINext uses semantic
segmentation annotation and its pre-trained model is avail-
able only for this dataset.

3.1. Evaluation

We use standard classification accuracy to report the suc-
cess rate of the attack and we define a novel metric to mea-
sure the success of fooling interpretation.
Energy Ratio: We normalize the interpretation heatmap to
sum to one for each image, and then calculate the ratio of

the total energy of the interpretation at the patch location
to that of the whole image. It will be 0 if the patch is not
highlighted at all and 1 if the heatmap is completely con-
centrated inside the patch.

We assume input images of size 224 � 224 and patches
of size 64 � 64 which occupy almost 8:2% of the image
area. We place the patch on the top-left corner of the image
for most experiments so that it does not overlap with the
main objects of interest. We use PyTorch [17] along with
NVIDIA Titan-X GPUs for all experiments.

3.2. Targeted adversarial patches

For the adversarial patch experiments described in the
method section, we use 50,000 images of the validation set
of ImageNet [4]. We perform 750 iterations of optimization
with � = 0:005 and � = 0:05. We use the Energy Ratio
metric for evaluation. The results in Table 1 show that our
patch has significantly less energy in the patch area. How-
ever, this comes with some reduction in the targeted attack
accuracy which can be attributed to the increased difficulty
of the attack. Figure 2 shows the qualitative results. We also
perform an ablation experiment to learn patches that result
in uniform interpretation heatmap to mitigate the concern
that the patch is clearly visible during a manual investiga-
tion, details for which can be found in the appendix.

3.3. Non-targeted adversarial patches

Here, we perform the non-targeted adversarial patch at-
tack using 50,000 images of the validation set of Ima-
geNet [4] ILSVRC2012. We perform 750 iterations with
� = 0:005 and � = 0:001. The results are shown in Table 1
and Figure A3 in the appendix.

3.4. Targeted patch on guided attention models

To challenge our attack algorithms, we use the GAINext

model [14] which is based on VGG19 and is supervised us-
ing semantic segmentation to produce better Grad-CAM re-
sults. The model is pre-trained on the training set of VOC-
2012, and we use the test set for optimizing the attack.
Since each image in the VOC dataset can contain more than
one category, we use the least likely predicted category as
the target. We perform 750 iterations with � = 0:1 and
� = 10�5. The quantitative results are shown in Table 2
and qualitative results are shown in Figure A4 of the ap-
pendix. Interestingly, our attack can fool this model even
though it is trained to provide better Grad-CAM results.

3.5. Generalization beyond Grad-CAM

We show that our patches learned using Grad-CAM are
also hidden in the visualizations generated by Occluding
Patch [22] method, which is a different interpretation algo-
rithm. In occluding patch method, we visualize the change
in the final score of the model by sliding a small black box



Method
Top-1 Acc(%) Non-Targeted Targeted

Acc (%) Energy Ratio (%) Acc (%) Target Acc (%) Energy Ratio(%)

Adversarial Patch [3] 74.24 0.06 50.87 0.02 99.98 76.26
Our Patch 74.24 0.05 2.61 2.95 77.88 6.80

Table 1: Comparison of heatmap energy within the 8% patch area for the adversarial patch [3] and our patch. We use an ImageNet
pretrained VGG19-BN model on 50,000 images of the validation set of ImageNet dataset. Accuracy denotes the fraction of images that
had the same �nal predicted label as the original image. Target Accuracy denotes the fraction of images where the �nal predicted label has
changed to the randomly chosen target label.
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Figure 2:Targeted patch attack: We use an ImageNet pretrained VGG-19 BN network to compare the Grad-CAM visualization results
for a random target category using our method vs Adv. Patch [3]. The predicted label is written under each image. Note that the patch is
not highlighted in the last column. More results of this experiment can be found in Figure A2 of the appendix.

Method Target Acc (%) Energy Ratio (%)

Adv. Patch [3] 94.34 37.90
Our Patch 94.70 3.2

Table 2: Targeted adversarial patch attack on GAINext model [14]

Method Targeted Attack Energy Ratio (%)

Adversarial Patch [3] 80.44
Our Patch 31.59

Table 3: Results showing transfer of our patch trained for Grad-
CAM and evaluated on Occluding Patch [22] visualization using
the GAINext model for VOC dataset.

on the image. Larger decrease in the score indicates that the
regions are more important and hence they contribute more
to the heatmap. The results of fooling GAINext model are
shown above in Table 3 and Figure A5 of the appendix.

3.6. Universal targeted patches

Universal attack is a much stronger form of attack
wherein the adversary needs to train a patch just once per
target category, and is able to fool multiple unseen test im-
ages. To learn universal patches, we use Eq. 1 to sum over
all training images for a given target category and evalu-
ate it on the test data. We use GAINext model along with
� = 0 :05 and � = 0 :09. The results are shown in Ta-
ble 4 and qualitative results are in Figure A6 of appendix.
We learn 20 different patches for each class of VOC dataset
as the target. We observe high fooling rates for both our
method and regular adversarial patch, but our method has
considerably low energy focused inside the patch area.

Method Target Acc (%) Energy Ratio (%)

Adv. Patch [3] 98.78 69.58
Our Patch 93.63 0.9

Table 4: Universal targeted patch attack on GAINext model. Note
that the results are averaged over 20 PASCAL VOC classes. Indi-
vidual class results can be found in the Table T4 of appendix.

4. Conclusion

We introduced adversarial patches which fool both the
classi�er and the interpretation of the resulting category.
Since we know that the patch is the true cause of the wrong
prediction, a reliable interpretation algorithm should de�-
nitely highlight the patch region. We successfully design an
adversarial patch that does not get highlighted in the inter-
pretation and hence show that popular interpretation algo-
rithms are not highlighting the true cause of the prediction.
Moreover, we show that our attack works in various set-
tings: (1) generalizes from Grad-CAM to Occluded Patch
[22], another interpretation method, (2) generalizes to un-
seen images (universal), and (3) is able to fool GAIN [14],
a model speci�cally trained with supervision on interpreta-
tion. Our work suggests that the community needs to de-
velop more robust interpretation algorithms, possibly using
our method as an evaluation metric.
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5. Appendix

Targeted regular adversarial examples:We consider reg-
ular adversarial examples (non-patch) [21] where the`1

norm of the perturbation is restricted to a small� , (e.g.
8/255) which fools both the network prediction and the net-
work interpretation. To this end, in Eq. 1 in the main paper,
we expand maskm to cover the whole image and initialize
z from x. Although this experiment does not necessarily
show that the interpretation method is wrong, we report the
results of such attacks for completeness. We perform 150
iterations with� = 8=255, � = 0 :001, and� = 0 :05. Since
the attack is not constrained to a patch location, the Energy
Ratio metric is no longer applicable. We use the following
two evaluation metrics:
(a) Histogram Intersection: To compare two different in-
terpretations, we calculate the Grad-CAM of the original
image and the adversarial image, normalize each to sum to
one, and calculate the histogram intersection between them.
(b) Localization: Similar to [18], we draw a bounding box
around values larger than a threshold (0.15), and evaluate
object localization from ImageNet competition. In Table
T1, we compare with PGD attack [15] as a baseline. The
corresponding qualitative results are shown in Fig A7. Note
that in this case, we run Grad-CAM for the original pre-
dicted category.

Image Loc. Error(%) Histogram

Original 66.68 1.0
PGD Adv. 67.74 0.77

Grad-CAM Adv. 76.02 0.64

Table T1: Evaluation results for adversarial examples generated
using our method and PGD [15] on 10% randomly sampled Im-
ageNet validation images. Note that for histogram intersection,
lower is better while for localization error, higher is better.

Uniform heatmap patches: One may argue that our at-
tacks may not be effective in practice to fool the manual
investigation of the network output since the lower (blue)
heatmap of the Grad-CAM can still be considered as a dis-
tinguishable signature (see Figure 2). We mitigate this con-
cern by optimizing the patch to encourage higher values of
Grad-CAM outside the patch area (top-right corner instead
of the patch area which is at the top-left corner). Our results
in Table T2 and Figure A1 show that our attack can still fool
the interpretation by generating a more uniform pattern for
the heatmap. We perform 1,000 iterations with� = 0 :007
and� = 0 :75.
Different networks and patch locations: In this section,
we evaluate our targeted adversarial patch attack algorithm
on ResNet-34 [8] and DenseNet-121 [10] by placing the
patch on the top-right corner of the image. Both models
are pretrained on ImageNet dataset and we use 5,000 ran-

Method Target Acc (%)
Energy Ratio (%)

Top-Left Top-Right

Adv. Patch [3] 100 76.96 1.65
Our Patch (Top-Left) 83.5 14.99 7.57

Table T2: Comparison of heatmap energy for the uniform patches.
We report the energy at both the top-left and top-right corners of
the heatmap.

dom images from the ImageNet validation set to evaluate
these attacks using theEnergy Ratiometric presented in Ta-
ble T3. Our patch fools the interpretation while reaching
the target category in more than90% of the images. Fig-
ures A8 and A9 show the qualitative results for Resnet-34
and Densenet-121 networks respectively.

Method
Targeted

Target Acc (%) Energy Ratio (%)

Adv. Patch (R-34) 100.0 61.9
Our Patch (R-34) 90.3 8.2

Adv. Patch (D-121) 99.9 71.3
Our Patch (D-121) 93.6 5.3

Table T3: Comparison of Grad-CAM heatmap energy within the
top-right corner patch area for ResNet-34 (R-34) and DenseNet-
121 (D-121) networks on 10% randomly sampled ImageNet vali-
dation images.




