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Abstract

A wide variety of works have explored the reason for the
existence of adversarial examples, but there is no consen-
sus on the explanation. We propose to treat the DNN log-
its as a vector for feature representation and exploit them
to analyze the mutual influence of two independent inputs
based on the Pearson Correlation Coefficient (PCC). We
utilize this vector representation to understand adversarial
examples by disentangling the clean images and adversar-
ial perturbations and analyze their influence on each other.
Our results suggest a new perspective towards the relation-
ship between images and universal perturbations: Univer-
sal perturbations contain dominant features, and images
behave like noise to them. This feature perspective leads
to a new method for generating targeted UAPs using ran-
dom source images. We achieve the challenging task of a
targeted universal attack without utilizing original training
data. Our approach using a proxy dataset achieves com-
parable performance to the state-of-the-art baselines which
utilize the original training dataset.

1. Introduction
Deep neural networks (DNNs) have shown impressive

performance in numerous applications, ranging from image
classification [7, 28] to motion regression [4, 27]. How-
ever, DNNs are also known to be vulnerable to adversarial
attacks [22, 20]. Contrary to previous works analyzing ad-
versarial examples [6, 23, 24, 10, 2] as a whole (summation
of image and perturbation), we propose to analyze adver-
sarial examples by disentangling image and perturbations
and studying their mutual influence. Specifically, we ana-
lyze the influence of two independent inputs on each other
in terms of contributing to the obtained feature representa-
tion when the inputs are combined. We treat the network
logit outputs as a means of feature representation. Tradi-
tionally, only the most important logit values, such as the
highest logit value for classification tasks, are considered

∗indicates equal contribution. Correspondence to
pbenz@kaist.ac.kr and chaoningzhang1990@gmail.com

while other values are disregarded. We propose that all logit
values contribute to the feature representation and therefore
treat them as a logit vector. We utilize the Pearson Corre-
lation Coefficient (PCC) [1] to analyze the extent of linear
correlation between logit vectors. The PCC values com-
puted between the logit vectors of each independent input
and the input combination gives insight on the contribution
of the two independent inputs towards the combined fea-
ture representation. Our findings show that for a univer-
sal attack [14, 15, 9, 25], the adversarial examples (AEs)
are strongly correlated to the UAP, while a low correlation
is observed between AEs and input images (see Figure 3).
This suggests that for a DNN, UAPs dominate over the
clean images in AEs, even though the images are visually
more dominant. Treating the DNN as a feature extractor,
we naturally conclude that the UAP has features that are
more dominant compared to the features of the images to
attack. Given this insight we extend the observations given
by Ilyas et al. [8] and claim that “UAPs are features while
images behave like noise to them”. This is contrary to the
general perception that treats the perturbation as noise to
images in adversarial examples [6, 14].

The observation that images behave like noise to UAPs
motivates the use of proxy images to generate targeted
UAPs without original training data. This results in a more
practical approach since the training data is generally inac-
cessible to an attacker [18]. A detailed version of this work
is presented in [26] and our contributions can be summa-
rized as follows:

• We propose to treat the DNN logits as a vector for fea-
ture representation. These logit vectors can be used to
analyze the contribution of features of two independent
inputs when summed towards the output. In particular,
our analysis results regarding universal attacks reveal
that in an AE, the UAP has dominant features, while
the image behaves like noise to them.
• We leverage this insight to derive a method using ran-

dom source images as a proxy dataset to generate tar-
geted UAPs without original training data. To our best
knowledge, we are the first to fulfill this challenging
task and it achieves comparable performance to the

1



state-of-the-art baselines utilizing the original training
dataset.

2. Analysis Framework

Following the common consensus that DNNs are feature
extractors, we intend to analyze adversarial examples from
such perspective. We assume that all DNN output logit val-
ues represent the network response to features in the input.
We adopt the logit vector (DNN output before the final soft-
max layer) to facilitate the analysis of the mutual influence
of two independent inputs in terms of their contribution to
the combined feature representation. We mainly consider
two independent inputs a ∈ Rd and b ∈ Rd, which can
be images, Gaussian noise, perturbations, etc., whose cor-
responding logit vectors are denoted as La and Lb, respec-
tively. The summation of these two inputs c = a+ b, when
fed to a DNN, leads to the feature representation Lc. Both
inputs a and b contribute partially to Lc. Moreover, it is
reasonable to expect that the contribution of each input will
be influenced by the other one. Specifically, the extent of
influence will be reflected in the linear correlation between
the individual logit vector La or Lb and Lc. To calculate
such correlations, we use the Pearson Correlation Coeffi-
cient (PCC).

In statistics, the PCC [1] is a widely adopted metric to
measure the linear correlation between two variables. In
general, this coefficient is defined as PCCX,Y = cov(X,Y )

σXσY
.

where cov indicates the covariance and σX and σY are the
standard deviations of vector X and Y , respectively, while
the range of PCC value is between −1 and 1. The abso-
lute value indicates the extent to which the two variables
are linearly correlated, with 1 indicating perfect linear cor-
relation, 0 indicating zero linear correlation, and the sign in-
dicates whether they are positively or negatively correlated.
Treating the logit vector as a variable and the logit values
as the observations, the PCC between different logit vectors
can be calculated. Comparing PCCLa,Lc and PCCLb,Lc can
provide insight about the contribution of the two inputs to
Lc, with a relatively higher PCC value indicating the more
significant contributor.

As a basic example, we show the logit vector analysis of
two randomly sampled images from ImageNet [11] in Fig-
ure 1. The plot shows a strong linear correlation between Lb
andLc ( PCCLb,Lc

= 0.88), whileLa andLc are practically
uncorrelated (PCCLa,Lc = 0.19). These observations sug-
gest a dominant contribution of input b towards logit vector
Lc. As a result, the same label “Wood rabbit” is predicted
for c and b.

Figure 1. Images and their logit vector analysis. The first row
shows the sample images a and b and the resulting image c. The
second row shows the plots of logit vector Lc over La (left) and
Lb (right), with their respective PCC values.

Figure 2. Logit vector analysis for an input image and Gaussian
noise N (µ, σ). The analysis is shown for µ = 0 and σ = 0 (left),
σ = 0.1 (middle) and σ = 0.2 (right))

3. Influence of images and perturbations on
each other

In this section, we analyze the interaction of clean im-
ages with Gaussian noise perturbations, universal perturba-
tions, and image-dependent perturbations. In doing so, in-
put a is the image and input b the perturbation. The analysis
is performed on VGG19 pretrained on ImageNet. For con-
sistency, a randomly chosen a (shown in Figure 1, top left)
is used for all experiments. Along the same lines, for tar-
geted perturbations, we set ’sea lion’ as the target class t.

Analysis of Gaussian Noise. To facilitate the interpre-
tation of our main experiment of performing analysis for
perturbations, we first show the influence of noise (Gaus-
sian noise) on images. This Gaussian noise is sampled from
N (µ, σ) with µ = 0 and different standard deviations. The
relationship between La, Lc is visualized in Figure 2. As
expected, by adding zero magnitude Gaussian noise (i.e. no
Gaussian noise) to the image, La and Lc are perfectly lin-
early correlated (PCCLa,Lc

= 1). If the Gaussian noise



Figure 3. Logit vector analysis for input image (a) and targeted
UAP (b).

Figure 4. Logit vector analysis for input image (a) and targeted
image-dependent perturbation (b). The perturbation was crafted
with PGD [13], with target class ’sea lion’

magnitude is increased (σ = 0.1 for instance), La and Lc
still show a high linear correlation (PCCLa,Lc

= 0.91). In-
vestigating the relationship between Lb and Lc, a low cor-
relation can be observed for all noise inputs b indicating a
low contribution to the final prediction.

Analysis of universal perturbations. The analysis re-
sults for the targeted UAP are shown in Figure 3. For the tar-
geted scenario, two major observations can be made: First,
PCCLa,Lc

is smaller than PCCLb,Lc
, indicating a higher

linear correlation between Lc and Lb than Lc and La. In
other words, the features of the perturbation are more dom-
inant than that of the clean image. Second, PCCLa,Lc is
close to 0, indicating that the influence of the perturbation
on the image is so significant that the clean image features
are seemingly unrecognizable to the DNN. In fact, compar-
ing the logit analysis of La and Lc in Figure 3 with that
of Gaussian noise and image in Figure 2 (bottom), a strik-
ing similarity is observed. This offers a novel interpreta-
tion of targeted universal perturbations: Targeted universal
perturbations themselves (independent of the images to at-
tack) behave like features, while images behave like noise
to them. For the untargeted UAP we observed a similar be-
havior as for the targeted universal perturbations (PCCLa,Lc

smaller than PCCLb,Lc ). However the dominance of the
non-targeted perturbation is not as significant as that of tar-
geted perturbation.

Analysis of image-dependent perturbations The logit
vector analysis results for a targeted image-dependent per-
turbation is reported in Figure 4. Contrary to the universal
perturbations, image-dependent perturbations are weakly
correlated to c and have a noise-like behavior (Figure 2).

However, the image gets misclassified even though the im-
age features appear to be more dominant than the perturba-
tion. This is because the image features are more strongly
corrupted through the image-dependent perturbation than
Gaussian noise. The specific reason for this special behav-
ior is that the image-dependent perturbations are crafted to
form features only in combination with the image. Such
image-dependent behavior violates our assumption of inde-
pendent inputs. However, we include these results because
they offer additional insight into adversarial examples.

3.1. Why adversarial perturbations exist?

Based on our previous analysis, we arrive at the follow-
ing explanation for the existence of UAPs: Universal ad-
versarial perturbations behave like features independent of
the images to attack. The image features are corrupted to
an extent of being unrecognizable to a DNN, and thus the
input images behave like noise to the perturbation features.

The finding in [9] that universal perturbations behave
like features of a certain class aligns well with our state-
ment. Jetley et al. argue that universal perturbations ex-
ploit the high-curvature image-space directions to behave
like features, while our finding suggests that universal per-
turbations themselves are features independent of the im-
ages to attack. Utilizing the perspective of positive curva-
tures of decision boundaries, Jetley et al. adopt the decision
boundary-based attack DeepFool [16]. However, our ex-
planation does not explicitly rely on the decision boundary
properties but focuses on the occurrences of strong features,
robust to the influence of images. We can, therefore, deploy
the PGD-algorithm to generate perturbations consisting of
target class features similar to [8].

If universal perturbations themselves are features inde-
pendent of the images to attack, do image-dependent pertur-
bations behave in a similar way? As previously discussed,
the analysis results in Figure 4 reveal that image-dependent
perturbations themselves are not like features but noise. On
the other hand, the original image feature is retained to a
high extent. Ilyas et al. [8] revealed that image-dependent
adversarial examples include the features of the target class.
However, as we saw from the previous analysis the isolated
perturbation seems not to retain independent features due
to its low PCC value, but rather interacts with the image to
form the adversarial features.

4. Targeted UAP with Proxy Data

Our above analysis demonstrates that images behave like
noise to the universal perturbation feature. Since the images
are treated as noise, we can exploit proxy images to generate
targeted UAPs without original training data. The proxy
image does not need to have any class object belonging to
the original training class and the main role of proxy images



Table 1. Results for targeted UAPs trained on four different
datasets reported in the targeted fooling ratio (%) obtained over
8 different target classes.

Proxy Data AlexNet GoogleNet VGG16 VGG19 ResNet152

ImageNet [11] 48.6 59.9 75.0 71.6 66.3
COCO [12] 47.2 59.8 75.1 68.8 65.7

VOC [5] 46.9 58.9 74.7 68.8 65.2
Places365 [29] 42.6 60.0 73.4 64.5 62.5

is to make the targeted UAP have strong background-robust
target class features.

To achieve the desired objective of a targeted UAP to
fool most of the data samples to a certain target class, most
naively the cross-entropy loss function LCE can be utilized.
Since cross-entropy loss holistically incorporates logits of
all classes, this loss function leads to overall lower fooling
ratios. This behavior can be resolved by using a loss func-
tion that only aims to increase the logit of the target class.
Since we consider universal perturbations, to balance the
objective between different samples in training, we clamp
the logit values as follows:

LtCL1 = max(max
i 6=t

Ĉi(xv + v)− Ĉt(xv + v),−κ) (1)

where κ indicates the confidence value and xv are samples
from the proxy dataset. In this case, the proxy data can be
either a random source dataset or the original training data,
depending on data availability. Note that similar techniques
of clamping the logits have also been used in [3], however,
their motivation is to obtain minimum-magnitude (image-
dependent) perturbation. However, using this loss function
LtCL1, while the target logit is increased, the logit values
of max Ĉi(xv+v) are decreased simultaneously during the
training process. This effect is undesirable for generating a
UAP with strong target class features since other classes ex-
cept the target classes will be included in the optimization,
which might have negative effects on the gradient update.
To prevent manipulation of logits other than the target class,
we exclude non-target class logit values in the optimization
step, such that non-target class logit values are only used
as a reference value for clamping the target class logit. We
indicate this loss function as LtCL2. We further provide a
loss function resembling LtCL2 for the generation of non-
targeted UAPs.

Lnt = max(Ĉgt(xv + v)−max
i6=gt

Ĉi(xv + v),−κ) (2)

In the special case of crafting non-targeted UAPs, the proxy
dataset has to be the original training dataset.

4.1. Results

We generate the targeted UAPs for four different
datasets, the ImageNet training dataset as well as three

Table 2. Comparison of the proposed method to other methods.
The results are divided into universal attacks with access to the
original ImageNet training data (upper) and data-free methods
(lower). The metric is reported in the fooling ratio (%))

Method AlexNet1 GoogleNet VGG16 VGG19 ResNet152

UAP [14] 93.3 78.9 78.3 77.8 84.0
GAP [19] - 82.7 83.7 80.1 -

Ours(ImageNet [11]) 96.17 88.94 94.30 94.98 90.08

FFF [18] 80.92 56.44 47.10 43.62 -
AAA [21] 89.04 75.28 71.59 72.84 60.72

GD-UAP [17] 87.02 71.44 63.08 64.67 37.3
Ours (COCO [12]) 89.9 76.8 92.2 91.6 79.9

Ours (VOC [5]) 89.9 76.7 92.2 90.5 79.1
Ours (Places365 [29]) 90.0 76.4 92.1 91.5 78.0

proxy datasets. As the proxy datasets, we use two object
detection datasets and one scene recognition dataset (MS-
COCO [12], Pascal VOC [5], Places365 [29]). Two ma-
jor observations can be made: First, a significant difference
can not be observed for the three different proxy datasets.
Moreover, there is only a marginal performance gap be-
tween training with the proxy datasets and training with the
original ImageNet training data. The results support our as-
sumption that the influence of the input images on targeted
UAPs is like noise.

To the best of our knowledge, this is the first work to
achieve targeted UAP without original training data, thus
we can only compare our performance with previous works
on related tasks. Other previous works report the (non-
targeted) fooling ratio and we compare our performance
with them in Table 2. We distinguish between methods with
and without data availability. To compare with the methods
with data-availability we trained a non-targeted UAP on Im-
ageNet utilizing our introduced non-targeted loss function
from Equation 2. We note that our approach achieves supe-
rior performance than both UAP [14] and GAP [19]. For the
case without access to the original training dataset, we show
the performances for different proxy datasets to generate the
UAP and report the average number over the performance
over 8 target classes. Note that our method is still targeted
UAP but we use the non-targeted metric to evaluate the per-
formance. This setting is in favor of other methods since
ideally, we could report the best performance of a certain
target class.

5. Conclusion
By treating the DNN logit output as a vector we analyze

the mutual influence between image and perturbations and
reveal that universal perturbations behave like features, and
images behave like noise to them. This insight is some-
what contrary to the wide perception to treat the perturba-
tion as “noise” to the images. Based on this understanding,
we propose to generate targeted UAPs by exploiting a proxy
dataset instead of the original training data.
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