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Abstract
Perception plays a pivotal role in autonomous vehicles

(AVs), which utilizes onboard sensors like cameras and Li-
DARs (Light Detection and Ranging) to assess surround-
ings. Recent studies have demonstrated that LiDAR-based
perception is vulnerable to spoofing attacks, in which adver-
saries spoof a fake vehicle in front of a victim AV by strate-
gically injecting laser signals to the victim’s LiDAR sensor.
In this work, we first explore a general vulnerability of cur-
rent LiDAR-based perception architectures that the ignored
occlusion and distancing patterns in point clouds make AVs
vulnerable to spoofing attacks. We construct the first black-
box spoofing attack based on our identified vulnerability,
which universally achieves around 80% mean success rates
on all target models. We further take a first step towards de-
signing a general architecture for robust LiDAR-based per-
ception, and propose sequential view fusion (SVF) which
reduces the mean attack success rate to around 2.3%.

1. Introduction
In autonomous driving perception, 3D object detection

is indispensable to ensure safe and correct driving deci-
sions, which takes point clouds generated by LiDAR sen-
sors as input and yields 3D bounding boxes of target ob-
jects. Point cloud data contains location information of each
reflected point along with its intensity (reflectance). Due to
a heavy reliance on LiDAR, a few prior studies have ex-
plored the security of LiDAR and its usage in autonomous
driving [13, 15, 5]. Among them, Cao et al. are the first
to discover that the deep learning model for LiDAR-based
perception used in a real-world autonomous driving system
can be fooled to detect a fake vehicle by strategically in-
jecting a small number of spoofed LiDAR points [5]. How-
ever, the attack proposed was evaluated on only one specific
model (i.e., Baidu Apollo 2.5) assuming white-box access,
which may be unrealistic. Moreover, we find that existing
LiDAR spoofing attacks [15, 5] cannot directly generalize
to all three state-of-the-art models.

In this work, we perform the first study to system-
atically explore, discover, and defend against a general

vulnerability existing among three state-of-the-art LiDAR-
based 3D object detection model designs: bird’s-eye view
(BEV)-based (Baidu Apollo 5.0 [1]), voxel-based (PointPil-
lars [11]), and point-wise (PointRCNN [14]). To explore the
vulnerability, we validate two potential false positive situa-
tions based on our empirical observations of deep learning
models and unique physical features of LiDAR, and dis-
cover that all the three state-of-the-art 3D object detection
model designs above generally ignore the occlusion and
distancing patterns in point clouds, which are two physi-
cal invariants for LiDAR. This allows an adversary to spoof
almost two magnitudes fewer points into the victim’s Li-
DAR but still can deceive the perception model into detect-
ing a fake front-near vehicle (§3.1). We construct the first
black-box spoofing attack based on our identified vulnera-
bility and demonstrate its effectiveness (§3.2). We further
take a first step to design a general architecture for robust
LiDAR-based perception, and show that it can effectively
defend existing spoofing attacks (§4).

Overall, this work makes the following contributions:
• We perform the first study to explore the general vul-

nerability of current LiDAR-based perception architectures.
We discover that current LiDAR-based perception models
ignore several physical features of LiDAR which result in
the success of spoofing attacks. We construct the first black-
box spoofing attack based on this vulnerability. Large-scale
evaluations show that attackers can achieve around 80%
mean success rates on all target models.
• We design a general architecture for robust LiDAR-

based perception in AVs by embedding the front view (FV)
representation of LiDAR point clouds. We find that exist-
ing view fusion-based models are still vulnerable to LiDAR
spoofing attacks. To address their limitations, we propose
sequential view fusion (SVF). SVF leverages a semantic
segmentation module to better utilize FV features. Evalu-
ations show that SVF can further reduce the mean attack
success rate to 2.3%.
2. Threat Model

Sensor attack capability. We adopt the formulation in
Adv-LiDAR [5] to describe the sensor attack capability (A):
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Figure 1: Illustration of an occluded vehicle in Li-
DAR point clouds from two different representations
(i.e., 3D and front view).
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Figure 2: Illustration of a distant vehicle and a
front-near vehicle in LiDAR point clouds, where the
front-vehicle occupies 17.8◦ horizontal angles.
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Figure 3: V (red points) in Figure 1 are
still detected as a valid vehicle when di-
rectly translated to a front-near location.

1) attackers are able to inject at most 200 points into the
victim LiDAR; 2) attackers are able to modify the distance,
altitude, and azimuth of a spoofed point to the victim Li-
DAR by changing the delay intervals of the attack devices.
Especially, the azimuth of a spoofed point can be modified
within a horizontal viewing angle of 10◦.

Black-box spoofing attack. We consider LiDAR spoof-
ing attacks as our threat model [15, 13]. We adopt the at-
tack goal of Adv-LiDAR [5]: to spoof a front-near vehicle
located 5-8 meters in front of the victim AV. We assume that
attackers can control the spoofed points within the observed
sensor attack capability (A). Note that attackers are not re-
quired to have access to the machine learning model nor the
perception system.

Defense against general spoofing attacks. We also
consider defending such LiDAR spoofing attacks and as-
sume a stronger attack model that adversaries have white-
box access to the machine learning models in AVs.
3. Black-box Spoofing Attack

We find that existing spoofing attacks suffer from effec-
tiveness, generality, and white-box access limitations, as in-
troduced in §1. Motivated by the above limitations, in this
section, we leverage an in-depth understanding of the intrin-
sic physical nature of LiDAR to identify a general design-
level vulnerability for current LiDAR-based perception, and
further construct the first black-box spoofing attack on state-
of-the-art models.

3.1. Vulnerability Identification
Despite a lack of generality, Adv-LiDAR was able to

spoof a fake front-near vehicle by injecting much fewer
amount of points than it is required for a valid vehicle rep-
resentation. For example, Cao et al. have demonstrated that
an attack trace with merely 60 points and 8◦ of horizontal
angles is sufficient to deceive Apollo 2.5 [5]. However, a
valid front-near vehicle (§2) contains around 2000 points
and occupies about 15◦ of horizontal angles in KITTI point
clouds [9]. It remains unclear why such spoofing attacks
can succeed despite a huge gap in the amount of points be-
tween that of a fake and a valid vehicle. To answer this ques-
tion, we identify two situations where a valid vehicle con-
tains a small number of points: 1) an occluded vehicle and
2) a distant vehicle as shown in Figure 1-2, which are sim-
ilar to human visual perception where occluded and distant

objects contain much fewer pixels in our retinas. Though
LiDAR sensors share similarities with human visual per-
ception, all three state-of-the-art classes of LiDAR-based
perception models operate object detection tasks in the 3D
Euclidean space (§1) different from 2D vision recognition
pipelines. We find that such small difference actually leaves
a potential attack surface for adversaries to launch spoofing
attacks (§2). More specifically, we discover and validate
two false positive (FP) conditions that apply to all models,
which could contribute to the success of Adv-LiDAR [5]:

FP1: If an occluded vehicle is detected in the pristine
point cloud by the model, its point set will still be detected
as a vehicle when directly moved to a front-near location.

FP2: If a distant vehicle is detected in the pristine point
cloud by the model, its point set will still be detected as a
vehicle when directly moved to a front-near location.

As mentioned earlier, the sensor attack capability A is
far from spoofing a fully exposed front-near vehicle’s point
set. However, FP1 and FP2 provide two strategies for ad-
versaries to launch spoofing attacks with fewer points and
horizontal angles. As a result, attackers can directly spoof
a vehicle imitating various occlusion (FP1) and distancing
(FP2) patterns that satisfy the sensor attack capability A to
fool the state-of-the-art models. For example, the V (red
points) in Figure 1 only contains 38 points and occupies
4.92◦ horizontally when translated to 6 meters in front of
the AV. We confirm that it can deceive all three target mod-
els successfully, as visualized in Figure 3.
3.2. Attack Construction

Constructing black-box attacks on deep learning models
is non-trivial. Our methodology attempts to closely repre-
sent realistic physical attacks using traces from real-world
datasets (e.g. KITTI [9]). In order to test different sen-
sor attack capability, we extract occluded vehicles’ point
sets with varying numbers of points (5-200 points) from the
KITTI validation set. We then construct a small dataset K
containing 100 point sets with different attack capabilities.
Besides collecting existing real-world traces, the identified
vulnerability also supports adversaries in generating cus-
tomized attack traces, which are more efficient for pipelin-
ing the attack process. We utilize a 3D car mesh and im-
plement a renderer [6] simulating the function of a LiDAR
sensor that probes the car mesh by casting lasers, as shown
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(a) ASR of Apollo 5.0.
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(b) ASR of PointPillars.
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(c) ASR of PointRCNN.
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Figure 4: Attack Success Rate (ASR) of proposed black-box spoofing attacks on three target state-of-the-
art models.

Figure 5: The process of generat-
ing attack traces for R from the imple-
mented renderer.

in Figure 5. We also follow the same procedure to build a
small datasetR containing 100 rendered point sets.

We further leverage a global translation matrix H(θ, τ)
(Equation 1) [5] to move every attack trace (Vi) to a front-
near location (i.e. 5-8 meters in front of the victim AV) in
the pristine point cloud, where θ and τ correspond to the
azimuth and distance of the translation (§2), respectively:

V ′i wi
= Viwi

V ′i wx

V ′i wy

V ′i wz

1

 =


cos θ − sin θ 0 τ cos (θ + α)
sin θ cos θ 0 τ sin (θ + α)

0 0 1 0
0 0 0 1

 ·

Viwx

Viwy

Viwz

1


(1)

(Viwx
, Viwy

, Viwz
, Viwi

) denotes the xyz-i feature vec-
tors (introduced in §1) of all points in Vi, and α =
arctan(Viwy

/Viwx
). Such a translation matrix has been

demonstrated to satisfy both the physical constraints of Li-
DAR [5] and attack capability (A).
3.3. Attack Evaluation and Analysis

Experimental setup. The evaluations are performed on
the KITTI trainval and test sets [9]. We test all the gener-
ated attack traces from K,R on all point cloud samples on
three target models by simulated spoofing. We also utilize
attack traces (S) generated by the blind sensor-level spoof-
ing attack with no control of the points as a baseline.

Evaluation metrics. We leverage the default thresholds
used by three target models to measure the Attack Success
Rate (ASR). We label an attack successful as long as the
model detects a vehicle at the target location whose confi-
dence score exceeds the default threshold:

ASR =
# of successful attacks

# of total point cloud samples
(2)

Figure 4 shows theASR of the simulated spoofing attack
with different attack capabilities (i.e. number of points).
As expected, the ASR increases with more spoofed points.
The ASRs are able to universally achieve higher than 80%
in all target models with more than 60 points spoofed. No-
tably, the attack traces from R achieve comparable ASR
with K on all target models, which demonstrate that adver-
saries can efficiently leverage a customized renderer to gen-
erate attack traces (Figure 5). Such rendered traces can be

directly programmed into hardwares for physical spoofing
attacks.
4. Sequential View Fusion

In this section, we take the first step towards exploring
the feasibility of embedding the ignored physical features
into end-to-end learning that provides better robustness for
LiDAR-based perception.

4.1. Why should FV Representations help?
We observe that LiDAR natively measures range data.

Thus, projecting the LiDAR point cloud into the perspective
of the LiDAR sensor will naturally preserve the physical
features of LiDAR. Such projecting is also known as the FV
of LiDAR point clouds [12]. Given a 3D point ~p = (x, y, z),
we can compute its coordinates in FV ~pFV = (r, c) by:

c = barctan(y, x)/∆θc

r = barctan(z,
√
x2 + y2)/∆φc

(3)

where ∆θ and ∆φ are the horizontal and vertical fire an-
gle intervals. As shown in Figure 1, since the occluder
O(v) and occludee V neighbor with each other in the FV,
deep learning models have opportunities to identify the oc-
clusion. The abnormal sparsity of a fake “distant” vehicle
will be also exposed, as valid vehicles’ points are clustered,
while the spoofed points scatter in the FV. Thus, the FV rep-
resentation of point clouds embeds both ignored features.

4.2. SVF Architecture
We find existing view fusion schemes [19, 8] that uti-

lize symmetric designs cannot provide better robustness be-
cause the 3D (or BEV) representation dominates the model
making the FV representation not critical in the end-to-end
architectures [10].

Based on the above understandings, we propose a new
view fusion schema called sequential view fusion (SVF).
SVF comprises of three modules (Figure 6), which are: 1)
semantic segmentation: a semantic segmentation network
that utilizes the FV representation to computes the point-
wise confidence scores (i.e., the probability that one point
belongs to a vehicle). 2) view fusion: the 3D representa-
tion is augmented with semantic segmentation scores. 3) 3D
object detection: a LiDAR-based object detection network
that takes the augmented point clouds to predict bounding
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Figure 6: Sequential view fusion (SVF) architecture.
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(a) ASR of SVF-PointPillars.

0 20 40 60 80 10
0

12
0

14
0

16
0

18
0

20
0

Attack Capability (# of spoofed points)

0

2.5

5

7.5

At
ta

ck
 S

uc
ce

ss
 R

at
e 

(%
)

,  on trainval set
,  on test set

(b) ASR of SVF-PointRCNN.

Figure 7: Attack Success Rate (ASR) of proposed black-box spoofing
attack on SVF models.

boxes. Instead of leaving the models to learn the impor-
tance of different representations by themselves, we attach
a semantic segmentation network to the raw FV data. By
doing so, we enforce the end-to-end learning to appreciate
the FV features, so that the trained model will be resilient
to LiDAR spoofing attacks.

Semantic segmentation. The semantic segmentation
networks accept the FV represented point clouds and as-
sociate each point in FV with a probability score that it
belongs to a vehicle. These scores provide aggregated in-
formation on the FV representation. Compared to 3D ob-
ject detection or instance segmentation, which is intractable
over FV, semantic segmentation is an easier task as it does
not need to estimate object-level output. Moreover, there
are extensive studies on semantic segmentation over FV
represented point clouds [17, 18, 3, 16, 4], and the segmen-
tation networks achieve much more satisfactory results than
the 3D object detection task over FV. In our implementa-
tion, we adopt the high-level design in LU-Net [4]. It is
worth noting that the end-to-end SVF architecture is agnos-
tic to the semantic segmentation module.

View fusion. The fusion module re-architects existing
symmetric designs which integrate the 3D representation
with the confidence scores generated by the semantic seg-
mentation module. Specifically, we use Equation 3 for map-
ping between ~p = (x, y, z) and ~pFV (r, c), and augment
each ~p with the point-wise confidence score from its cor-
responding ~pFV .

3D object detection. SVF is also agnostic to the 3D ob-
ject detection module. This module takes the augmented
point clouds and output the 3D box predictions. In this pa-
per, we utilize PointPillars and PointRCNN models.
4.3. SVF Evaluations

Experimental setup. We train SVF-PointPillars and
SVF-PointRCNN on the KITTI training set, and evaluate
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Figure 8: Average confidence
score of Adv-LiDAR on the seman-
tic segmentation network.
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Figure 9: Average confidence
score of the adaptive attack on the
semantic segmentation network.

them against Adv-LiDAR [5] on Apollo 5.0.
Evaluation metrics. We evaluate the average preci-

sion (AP) of SVF-PointPillars and SVF-PointRCNN on the
KITTI validation set, and leverageASR to test their robust-
ness against LiDAR spoofing attacks.

Figure 7 shows the ASR of our proposed spoofing at-
tacks. As shown, the attacks are no longer effective in SVF
models. The ASR reduces from more than 95% (original
models) to less than 4.5% on both models with the max-
imum attack capability. The mean ASR also drops from
80% to around 2.3%. We also perform ablation study on
SVF, and demonstrate that the FV features are more impor-
tant in SVF models. Both SVF models also achieve compa-
rable AP compared to the original models.

4.3.1 Defense against White-box and Adaptive Attacks
We test whether the state-of-the-art white-box attack, Adv-
LiDAR can succeed in both the semantic segmentation and
3D object detection modules. We first directly apply the
attack traces that successfully fool Apollo 5.0 to the seg-
mentation network and record the mean confidence score of
all the points belonging to the attack trace. Figure 8 shows
that the mean confidence scores are consistently below 0.08
which is too low to be classified as a valid vehicle whose
mean confidence score is around 0.73 in our trained model.

Model-level defenses are usually vulnerable to simple
adaptive attacks [2, 7]. We assume that the adversaries
are aware of the SVF architecture. The attack goal is to
both fool the semantic segmentation and 3D object detec-
tion modules. We also leverage the formulation in [5] to
utilize the global transformation matrix H(θ, τ) to control
the spoofed points. Figure 9 shows that none of the attack
traces’ average confidence score reaches 0.2 in the segmen-
tation module, which is still far from the mean average con-
fidence score of valid vehicle 0.73. Therefore, the adaptive
attacks also cannot break the robustness of SVF.
5. Conclusion

In this paper, we perform the first study to explore the
general vulnerability of LiDAR-based perception architec-
tures. We construct the first black-box spoofing attack based
on the identified vulnerability, which universally achieves
an 80% mean success rate on target models. We fur-
ther present SVF, the first general architecture for robust
LiDAR-based perception that reduces the mean spoofing at-
tack success rate to 2.3%.
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