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Abstract

Neural network quantization has become increasingly
popular due to efficient memory consumption and faster
computation resulting from bitwise operations on the quan-
tized networks. Even though they exhibit excellent gener-
alization capabilities, their robustness properties are not
well-understood. In this work, we systematically study the
robustness of quantized networks against gradient based
adversarial attacks and demonstrate that these quantized
models suffer from gradient vanishing issues and show a fake
sense of security. By attributing gradient vanishing to poor
forward-backward signal propagation in the trained net-
work, we introduce a simple temperature scaling approach
to mitigate this issue while preserving the decision bound-
ary. Despite being a simple modification to existing gradient
based adversarial attacks, experiments on CIFAR-10 dataset
with VGG-16 and ResNet-18 networks demonstrate that our
temperature scaled attacks obtain near-perfect success rate
on quantized networks while outperforming original attacks
on adversarially trained models and floating-point networks.

1. Introduction
Neural Network (NN) quantization has become increas-

ingly popular due to reduced memory and time complexity
enabling real-time applications and inference on resource-
limited devices. Such quantized networks often exhibit ex-
cellent generalization capabilities despite having low ca-
pacity due to reduced precision for parameters and activa-
tions. However, their robustness properties are not well-
understood. In particular, while parameter quantized net-
works are claimed to have better robustness against gradient
based adversarial attacks [5], activation only quantized meth-
ods are shown to be vulnerable [10]. Although it has been
hinted that there might be some sort of gradient masking in
BNNs (especially in activation quantized networks), a thor-
ough understanding is lacking on whether BNNs are robust,
if not what is the reason for inferior performance of gradient
based attacks on binary networks. We answer this question

in this paper and introduce improved PGD attacks.
In this work, we consider the extreme case of Binary

Neural Networks (BNNs) and systematically study the ro-
bustness properties of parameter quantized models, as well
as both parameter and activation quantized models against
gradient based adversarial attacks. Our analysis reveals that
these quantized models suffer from vanishing gradient issue
due to poor forward-backward signal propagation caused
by trained binary weights, and our idea is to improve signal
propagation of the network without affecting the prediction
of the classifier. To this end, we first discuss the conditions
to ensure informative gradients and resort to a temperature
scaling approach [8] to show that, even with a single positive
scalar the vanishing gradients issue in BNNs can be allevi-
ated achieving near perfect success rate in all tested cases.
Specifically, we introduce a technique to choose the temper-
ature scale based on the singular values of the input-output
Jacobian. The justification for this is that if the singular
values of input-output Jacobian are concentrated around 1
(defined as dynamical isometry [12], used to solve vanish-
ing/exploding gradients issue) then the network is said to
have good signal propagation and we intend to make the
mean of singular values to be 1.

We evaluated our improved gradient based adversarial
attacks on CIFAR-10 datasets with VGG-16 and ResNet-18 net-
works quantized using multiple recent techniques [1, 2, 3, 9].
In all tested quantized models, our temperature scaled attacks
obtained near perfect success rate outperforming gradient
based attacks (FGSM [7], PGD [11]) in their original form.
Furthermore, this temperature scaling improved gradient
based attacks even on adversarially trained models (both
high-precision and quantized), showing the significance of
signal propagation for adversarial attacks.

2. Robustness Evaluation of BNNs
We start by evaluating the adversarial accuracy of BNNs

trained using various techniques, namely BC [4], PQ [3],
PMF [1], MD-tanh-S [2], BNN-WAQ [9] using the Projected
Gradient Descent (PGD) attack [11] with L∞ bound where
the attack details are summarized below:
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Algorithm Clean White Box Black Box

REF 94.46 0.0 -
PMF [1] 93.24 33.02 2.2
PQ [3] 91.49 22.49 23.82
BNN-WAQ [9] 87.67 8.57 33.87
BC [4] 91.63 4.40 12.84
MD-tanh-S [2] 93.18 26.98 2.92

Table 1: Recognition accuracy (clean vs. adversarial) on the
test set of CIFAR-10 using ResNet-18 for BNNs with different
methods for quantization. BNNs consistently outperform
robustness accuracy of floating point networks (REF). All
BNNs are parameter quantized except BNN-WAQ for which
both weights and activations are quantized.

• PGD attack details: perturbation bound of 8 pixels (as-
suming each pixel in the image is in [0, 255]) with respect
to L∞ norm, step size η = 2 and the total number of
iterations T = 20. In all attacks, a randomized step is
taken to initialize the perturbations. The attack details are
the same in all evaluated setting unless stated otherwise.

We perform experiments on CIFAR-10 dataset using ResNet-
18 architecture and report the clean and adversarial accuracy
(white box and black box) results in Table 1. It can be
clearly and consistently observed that BNNs have high white
box adversarial accuracy whereas low or comparable black
box adversarial accuracy. Here, our black-box model to a
BNN is the analogous floating point network trained on the
same dataset and the attack is the same PGD with L∞ bound.
This demonstrates that BNNs are prone to gradient masking
(vanishing gradients) and exhibit a fake sense of security.

3. Signal Propagation of Neural Networks
In this section, let us first describe how poor signal propa-

gation can cause vanishing or exploding gradients. We then
discuss the idea of introducing a single scalar to improve
the existing gradient descent attacks without affecting the
prediction (i.e., decision boundary) of the trained models.

We consider a neural network fw for an input x0, having
logits aK = fw(x0). Now, since softmax cross-entropy is
usually used as the loss function, we can write:
`(aK ,y) = −yT log(p) , p = softmax(aK) , (1)

where y ∈ IRd is the one-hot encoded target label and log is
applied elementwise.

For various gradient based adversarial attacks (FGSM,
PGD), gradient of the loss ` is used with respect to the input
x0, which can also be formulated using chain rule as,

∂`(aK ,y)

∂x0
=
∂`(aK ,y)

∂aK
∂aK

∂x0
= ψ(aK ,y)J , (2)

where ψ denotes the error signal and J ∈ Rd×N is the input-
output Jacobian. Here we use the convention that ∂v/∂u is
of the form v-size × u-size.

Notice there are two components that influence the gradi-
ents, 1) the Jacobian J and 2) the error signal ψ. Gradient
based attacks would fail if either the Jacobian is poorly con-
ditioned or the error signal has saturating gradients, both of
these will lead to vanishing gradients in ∂`/∂x0.

It is known that a network is said to satisfy dynamical
isometry [12, 13] if the singular values of J are concentrated
near 1, i.e., for a given ε > 0, the singular value σj satisfies
1 − σj ≤ ε for all j. Thus, just like dynamical isometry
speeds up the training for the floating point networks by
improving the signal propagation, a similar technique can be
useful for gradient based attacks as well.

In fact, almost all initialization techniques (e.g., [6]) ap-
proximately ensures that the Jacobian J is well-conditioned
for better trainability. For continuous networks trained on
the clean samples, approximate isometry is often preserved
even at the end of the training but this is not the case for
adversarially trained models or binary networks. In fact, for
BNNs, the weights are constrained to be {−1, 1} and hence
the weight distribution at the end of training is completely
different from the random initialization. We illustrate the
signal propagation properties of various networks in Table 2.

We would like to point out that the focus of this paper is to
improve gradient based attacks on already trained BNNs. To
this end learning a new scalar to improve signal propagation
at each layer is not useful as it can alter the decision boundary
of the network and thus cannot be used in practice on the
already trained model.

3.1. Temperature Scaling for better Signal Propa-
gation

In this paper, we propose to use a single scalar per net-
work to improve the signal propagation of the network using
temperature scaling. In fact, one could replace softmax with
a monotonic function such that the prediction is not altered,
however, we will show in our experiments that a single scalar
with softmax has enough flexibility to improve signal propa-
gation and yields almost 100% success rate with PGD attacks.
Essentially, we can use a scalar, β > 0 without changing the
decision boundary of the network by preserving the relative
order of the logits. Precisely, we consider the following:

p(β) = softmax(āK) , āK = β aK . (3)
Here, we write the softmax output probabilities p as a func-
tion of β to emphasize that they are the softmax output of
temperature scaled logits. Now since in this context, the only
variable is the temperature scale β, we denote the loss and
the error signal as functions of only β. With this simplified
notation, the gradient of the temperature scaled loss with
respect to the inputs can be written as:

∂`(β)

∂x0
=
∂`(β)

∂āK
∂āK

∂aK
∂aK

∂x0
= ψ(β)β J . (4)

Note that β affects the input-output Jacobian linearly while
it nonlinearly affects the error signal ψ. A heuristic choice



Methods REF Adv. Train BC [4] PQ [3] PMF [1] MD-tanh-S [2] BNN-WAQ [9]

JSV (Mean) 8.09e+00 5.15e−01 1.61e+01 2.34e+01 4.46e+01 3.53e+01 1.11e+00
JSV (Std.) 6.27e+00 4.10e−01 1.88e+01 2.35e+01 1.11e+02 3.53e+01 1.97e+00
‖ψ‖2 (Mean) 9.08e−03 2.33e−01 1.18e−02 6.75e−03 8.50e−03 6.20e−03 9.46e−03

Table 2: Mean and standard deviation of Jacobian Singular Values (JSV) and mean ‖ψ‖2 for different methods on CIFAR-10
with ResNet-18 computed with 500 correctly classified samples. Note the norm of the error signal ψ is very small in all cases
except for Adv. Train, indicating that all models are over confident (probabilities close to one-hot) except for Adv. Train which
is in fact under confident for correctly classified samples. Furthermore, one can clearly see that BNNs (except BNN-WAQ) have
much higher JSV mean and we believe this leads to gradient vanishing, i.e., increased scale for logits aK and in turn reduced
(if not zero) error signal ψ.

of β (e.g. β = 10) might enable ψ(β) > 0 but can degrade
conditioning of the Jacobian. To this end, we hope to obtain
a β that ensures that the error signal is useful (i.e., not all
zero) as well as the Jacobian is well-conditioned to allow the
error signal to propagate to the input.

4. Network Jacobian Scaling (NJS)
We now discuss a straightforward, two-step approach to

attain the aforementioned properties on β. Firstly, to ensure
βJ is well-conditioned, we simply choose β to be the inverse
of the mean of singular values J. This guarantees that the
mean of singular values of βJ is 1. Formally, let us choose
M samples from the test set, we can derive β as follows:

β =
M d∑M

i=1

∑d
j=1 µj(Ji)

, (5)

where µj(Ji) denotes jth singular value of the Jacobian Ji
corresponding to the ith sample.

After this Jacobian based scaling, there can be a situa-
tion where the error signal is very small. To ensure that
‖ψ(β)‖2 > ρ > 0, we ensure that the softmax output pk(β)
corresponding to the ground truth class k is at least ρ away
from 1. We now state it as a proposition to derive β given a
lowerbound on 1− pk(β).

Proposition 1. Let aK ∈ IRd with d > 1 and
aK1 ≥ aK2 ≥ . . . ≥ aKd and aK1 − aKd = γ.
For a given 0 < ρ < (d− 1)/d, there exists a
β > 0 such that 1− softmax(βaK1 ) > ρ, then
β < − log(ρ/(d− 1)(1− ρ))/γ.

Proof. Assuming aK1 − aKd = γ, we derive a condition on
β such that 1− softmax(βaK1 ) > ρ.

exp(βaK1 )/

d∑
λ=1

exp(βaKλ ) < 1− ρ , (6)

1/
(
1 +

d∑
λ=2

exp(β(aKλ − aK1 ))
)
< 1− ρ ,

1/
(
1 +

d∑
λ=2

exp(−βγ)
)
< 1− ρ , aK1 − aKλ ≤ γ, ∀λ > 1

β < − log(ρ/(d− 1)(1− ρ))/γ .

Algorithm 1 PGD++ with NJS with L∞, T iterations,
radius ε, step size η, network fw∗ , input x0, label k, one-
hot y ∈ {0, 1}d, gradient threshold ρ.

Require: T, ε, η, ρ,x0,y, k
Ensure: ‖xT+1 − x0‖∞ ≤ ε
β1 = (M d)/

(∑M
i=1

∑d
j=1 µj(Ji)

)
. N/W Jacobian.

x1 = P ε∞(x0 + Uniform(−1, 1)) . Rand. Init.
for t← 1, . . . T do

β2 = 1.0
p′ = softmax(β1(fw∗(xt)))
if 1− p′k ≤ ρ then . ρ = 0.01

β2 = − log(ρ/(d− 1)(1− ρ))/γ . Proposition 1
` = −yT log(softmax(β2β1(fw∗(xt))))
xt+1 = P ε∞(xt + η sign(∇x`(x

t))) . Update Step

This β can be used together with the one computed in
Eq. (5). We provide the pseudocode for our proposed PGD++
attack with NJS scaling in Algorithm 1. Similar approach
can also be applied for FGSM++.

5. Experiments
In this section, we evaluate floating point networks (REF),

parameter quantized networks (BC, PQ, PMF, MD-tanh-
S) [4, 3, 1, 2] and weight and activation quantized network
(BNN-WAQ) [9]. We evaluate our PGD++ attack correspond-
ing Network Jacobian Scaling (NJS) on CIFAR-10 dataset
with VGG-16 and ResNet-18 architectures. The values ob-
tained for β using NJS are mostly greater than 1 and vary
sample-wise. Briefly, our results indicate that our proposed
attack yield attack success rate much higher than original
PGD attacks on both floating point networks and binarized
networks. Our proposed PGD++ attack also reduces PGD ad-
versarial accuracy of adversarially trained floating point and
adversarially trained binarized neural networks. We use the
state of the art models trained for binary quantization from
respective methods. For NJS, we set the value of ρ = 0.01.

5.1. L∞ bounded Attacks
Attack details are: PGD: perturbation bound of ε = 8

pixels, step size η = 2 and number of iterations T = 20,
FGSM: step size η = 8. We compared the original PGD
with improved PGD++ attack and the original FGSM with



Methods
ResNet-18 VGG-16 ResNet-18 VGG-16

FGSM FGSM++ FGSM FGSM++ PGD PGD++ PGD PGD++

REF 7.62 5.55 11.01 10.04 0.00 0.00 0.04 0.00
BC 11.15 3.77 27.38 4.96 4.40 0.00 9.28 0.37
PQ 52.97 4.50 27.46 5.38 22.49 0.01 23.41 0.00
PMF 48.65 3.22 54.87 5.19 33.02 0.00 54.11 0.00
MD-tanh-S 40.49 3.46 57.55 4.00 26.98 0.00 47.32 0.00
BNN-WAQ 40.84 19.46 79.92 15.96 8.57 0.03 78.01 0.01

Table 3: Adversarial accuracy on the test set of CIFAR-10 dataset for binary neural networks using different methods for
quantization comparing original FGSM attack with FGSM++ attack and original PGD attack with PGD++ attack.

Methods FGSM
FGSM++

PGD
PGD++

β = 0.1 NJS β = 0.1 NJS

REF 62.38 69.52 61.43 48.73 61.27 47.17
BC [4] 53.91 62.46 52.90 41.29 54.24 39.35
GD-tanh [2] 56.13 65.06 55.54 42.77 56.78 42.14
MD-tanh-S [2] 55.10 63.42 54.74 41.34 54.22 40.76

Table 4: Adversarial accuracy on the test set of CIFAR-10
with ResNet-18 for adversarially trained floating and binary
neural networks using different methods for quantization
comparing original L∞ bounded FGSM attack with FGSM++
and original L∞ bounded PGD attack with PGD++.

improved FGSM++, on CIFAR-10 dataset using ResNet-18 and
VGG-16 networks and the adversarial accuracies are reported
in Table 3. Our PGD++ attack consistently outperforms orig-
inal PGD on all binarized networks. Even being a gradient
based attack, our proposed PGD++ attack can in fact reach
adversarial accuracy close to 0 on CIFAR-10 dataset, demys-
tifying the fake sense of robustness binarized networks tend
to possess due to the poor signal propagation issue.

Similarly, even in the one step attack i.e. FGSM, our mod-
ified attack performs well. We would like to point out such
an improvement in the above two attacks is considerably in-
teresting, knowing the fact that FGSM, PGD with L∞ attacks
only use the sign of the gradients so improved performance
indicates, our temperature scaling indeed makes some zero
elements in the gradient nonzero.

5.2. Adversarially Trained Models

To further demonstrate the efficacy, we first adversarially
trained the parameter quantized networks and floating point
networks in a similar manner as in [11], using L∞ bounded
PGD with T = 7 iterations, η = 2 and ε = 8. We then
evaluate the adversarial accuracies using L∞ bounded PGD
and PGD++ attack with T = 20, η = 2, ε = 8 on CIFAR-10
dataset using ResNet-18 and the results are reported in Table 4.
The adversarial accuracy results on adversarially trained
binary and floating point networks further strengthens the
usefulness of our proposed PGD++ attack using NJS. To
illustrate the effectiveness of NJS over a heuristic choice of
β, we show adversarial accuracy for FGSM++ with β = 0.1.
The inferior adversarial accuracy with heuristic β reflects
importance of an optimal way of estimating β.

6. Discussion
In this work, we have shown that BNNs suffer from gra-

dient vanishing issues due to poor signal propagation. To
tackle this, we introduced our PGD++ adversarial attack
that possesses near-complete success rate on BNNs and also
outperforms standard L∞ PGD attacks on floating-point net-
works and adversarially trained models. In future, it would
be interesting to compare exact robustness bounds on float-
ing point networks and BNNs.
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