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Abstract

In this paper, we implement a method of robust 3D adver-
sarial attacks which considers different viewpoints where
the victim camera can be placed. In particular, we find a
method to create 3D adversarial examples that can achieve
100% attack success rate from all viewpoints with any inte-
ger spherical coordinates. Our method is simple as we only
perturb the texture space. We create 3D models with real-
istic textures using 3D reconstruction from multiple uncal-
ibrated images. With the help of a differentiable renderer,
we then apply gradient based optimization to compute tex-
ture perturbations based on a set of rendered images, i.e.,
training dataset. Our extensive experiments show that even
only including 1% of all possible rendered images in train-
ing, we can still achieve 99.9% attack success rate with the
trained texture perturbations. Furthermore, our thorough
experiments show high transferability of the multiview ro-
bustness of our 3D adversarial attacks across various deep
neural network models.

1. Introduction

Despite the fact that adversarial examples are well ex-
plored in the 2D realm, physical adversarial attack is still
a few steps away from realization [21, 13, 18, 15, 3, 10,
23, 12, 16, 14]. One of the main reasons is the lack of
robust 3D adversarial examples that can consistently fool
deep neural networks in multi-view settings. To overcome
the challenges, there are some prior works on generating 3D
adversarial examples and have made significant progress in
obtaining improved attack success rates [1, 2, 27, 24]. It
was found that the attack success rate depends on the range
of viewpoints where the victim camera can be placed[24].
Given the same number of victim image instances used in
optimization (training), when the range of viewpoints in-
creases, the attack success rate of the adversarial 3D model
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drops. However, it is not known yet whether a 3D adversar-
ial model with 100% attack success rate from all possible
viewpoints could ever be generated against current popu-
lar deep neural network models. The next question to ask
is if such 3D adversarial models exist, how many training
images are at least needed in the process of optimization.

In this paper, we investigate the above two questions and
provide insights into multiview attack robustness of 3D ad-
versarial examples. In particular, we propose a method to
create 3D adversarial models that can achieve 100% attack
success rate from viewpoints with any integer spherical co-
ordinates. Those integer spherical coordinates constitute
a dense sampling of the viewing sphere around an object,
which ensures a statistically high confidence level in the
success rate achieved by the proposed method. We apply
the method and generate 3D adversarial examples for 5 dif-
ferent realistic 3D objects. One challenge is to ensure the
victim camera can be fooled from any viewpoint and at the
same time make the 3D adversarial example realistic. Re-
alistic models are important because their existence is less
conspicuous, matching real-world objects and the environ-
ment around them in detail and thus less noticeable by hu-
mans. To tackle this challenge, our method only perturbs
the texture, and the original 3D models with realistic tex-
tures are created using 3D reconstruction from multiple un-
calibrated images. Fast Gradient Sign Method based train-
ing is applied to compute the texture perturbations that max-
imize the loss between the prediction of the rendered images
and the correct class.

We further investigate the minimum number of training
images required to obtain such a robust 3D adversarial ex-
ample. We find that for victim images uniformly distributed
at different perspectives, our method only needs 1% of the
total in the process of optimization to achieve 99.9% attack
success rate. This result is encouraging because it means
with less computation resource and time restrictions, robust
3D adversarial examples can be generated and studied. We
also perform black-box attacks on 12 popular deep neural
networks. Results show that there is a high transferability
of perturbations of our method.
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2. Approach
2.1. Multiview Robust 3D Adversarial Example

Training

Our method to generate 3D adversarial models includes
the following three stages: 1) create a 3D model with re-
alistic textures using 3D reconstruction from numerous un-
calibrated images; 2) render 2D victim images from the 3D
model to form the training dataset; 3) compute the texture
perturbation by applying gradient based optimization on the
training dataset.

To achieve the multiview robustness of 3D adversarial
examples, in the second stage, we render 2D images at
different viewpoints which are spherically uniformly dis-
tributed. We define a renderer’s viewpoint location using
spherical coordinates (ρ, θ, φ) representing distance, alti-
tude, and azimuth. We vary the altitude and azimuth with
different integer values, but keep the distance fixed for sake
of simplicity. When we test the attack success rate of our
3D adversarial models, the victim camera is allowed to be
placed at viewpoints with any integer value of θ ranging
from −90◦ to 90◦, and the azimuth φ ranging from 1◦ to
360◦.

Given a 3D textured model X(T ) with a texture T and
a differentiable renderer r(•), a 2D image Y rendered from
the camera ( ρ, θ, φ) can be expressed as

Y = r(X(T ), ρ, θ, φ, ψ),

where ψ denotes other rendering parameters such as light
and shading. Denote the output classification of a deep neu-
ral network f(•) byZ such thatZ = f(Y ), for the rendered
2D image Y . Let ZCorrect be the actual ImageNet label for
the 3D model that we are using. If Z 6= ZCorrect, then we
disregard Y and proceed to the next image.

Optimization Objective. For correctly classified images,
we compute the loss between the image’s output classifica-
tion and 3D object’s correct class. We use the cross entropy
loss function, defined as − log pY,c, where pY,c is the pre-
dicted probability that the input Y is of the correct class.
The loss is accumulated across the entire training dataset,
becoming

L(T ) = −
∑
Y ∈R

I(Y ) ∗ log pY,c (1)

where T represents the texture of the 3D model and R the
training dataset. By following the FGSM-based optimiza-
tion, the texture is updated in the direction of the gradient
∇TL(T ) such that

T = T + ε ∗ sign(∇TL(T )). (2)

The noise magnitude ε is assigned a small value like 0.001
each iteration in order to find a minimum perturbation re-
quired. With the proposed optimization, we can obtain the

trained texture Tperturbed such that all rendered 2D images
in the training dataset are misclassfied by the target deep
learning model. Our pseudocode summarizing the entire
procedure is shown in Algorithm 1.

Algorithm 1 Multiview Robust 3D Adversarial Example
Training

1: procedure ADVTRAIN(X(T ), f, ZCorrect, p)
2: ε = 0.001
3: altitude range = range(−90, 90, p)
4: azimuths range = range(0, 360, p)
5: ρ = 2.732
6: while true do
7: for θ in altitude range do
8: for φ in azimuths range do
9: Y = r(X(T ), ρ, θ, φ)

10: Z = f(Y )
11: if Z == ZCorrect : then
12: T = T + ε ∗ sign(∇TL(T ))
13: end if
14: end for
15: end for
16: if all Z 6= Zcorrect then
17: Break
18: end if
19: end while
20: Return the perturbed texture T
21: end procedure

2.2. Training Image Dataset Size

In our approach the training dataset size directly affects
the training time, and may affect the attack success rate of
3D adversarial examples. Our goal is a 100% attack success
percentage from any viewpoints with integer altitude and
azimuths coordinates. In order to determine the minimum
number of training images needed to achieve our goal, we
conduct a search for this training dataset size by starting
with the largest training dataset possible and then shrinking
it at a quadratic rate. We find a tight range in which the
model remains completely adversarial from any viewpoint,
as shown in Section 4.3. The images in our datasets are all
evenly spaced, but if appropriate, one can also choose to
include more rendered images from some particular angles
of a 3D model than others.

In Algorithm 1, we define a sampling step size p which
represents the number of integer degrees in both the az-
imuth and altitude direction per image sample. For exam-
ple, When ptrain = 10, for every 10 degree change in the
azimuth and for every 10 degree change in the altitude, one
rendered image is included into this training dataset, total-
ing 18× 36 = 648 images.



Figure 1. The effect on the number of iterations of the I-FGSM on
the percentage of false negatives for the training dataset

3. Experiments

3.1. Experiment Setup

We first created realistic 3D models using photogram-
metry, and then used a differentiable Neural Renderer [8]
on the 3D models to obtain 2D victim images for the train-
ing dataset. The testing dataset’s sampling step is fixed at
ptest = 1, i.e., we test the 3D adversarial model from all
viewpoints with integer coordinates. To reduce the number
of hyperparameters, we fixed the perturbation per iteration
in Algorithm 1, ε, at 10−3 for all experiments.

3.2. Results on Attacking in Texture Space

In this experiment, we test the efficacy of only attacking
the texture space of a 3D model of a grey running shoe. For
the experiments in this subsection we set our sampling step
ptrain at 3, and we use the Inception v3 model. As the com-
puting time and resources are an important factor of attack
feasibility, we investigate how increasing the number of it-
erations of Algorithm 1 on rendered 2D images will affect
the false negative rate on the training dataset. The false neg-
ative rate of the 2D image classifier on the training images
reflects the percentage of training images that can fool the
classifier. Figure 1 shows that after only 6 iterations, more
than 90% of our training images are misclassified, and after
15 iterations all training images become adversarial. 100%
of the testing dataset becomes false negatives once the per-
turbations are finished training.

After we finish training, i.e., all 2D images in the training
dataset are misclassified, we reconstruct the 3D adversarial
model using the perturbed images. Figure 2 shows render-
ings of the model without the texture perturbations, with the
perturbations, and the perturbations themselves once noise
training is finished. As we can see in the figure, the dif-
ference between (c) Model with perturbation and (a) Model
without perturbations is not noticeable by humans’ eyes.

(a) Model without
Noises

(b) Rendering of
Noises

(c) Model with
Noises

Figure 2. Renderings of a running shoe at (φ, θ) = (30◦, 270◦)

3.3. Results on Different Sampling Ratios

Continuing with the grey running shoe and Inception v3
model, in this subsection, we investigate the effect of dif-
ferent sampling ratios in training dataset on the multiview
attack success rate. In this experiment, we render 2D im-
ages from the 3D adversarial model at all viewpoints with
integer altitude and azimuth coordinates and calculate the
percentage of rendered images that are mis-classified by the
classifier. This percentage is denoted as the attack success
rate. The attack success rates reported in Section 4.4 and
4.5 are calculated in the same way.

As shown in Figure 3, setting the sampling step size
ptrain = 1 results in a 100% attack success rate, which is
expected because the training dataset is iteratively trained
until reaching a 100% false negative rate and all 64800
images in the testing dataset are included in the training
dataset. More interestingly, setting ptrain = 2 or 3 pre-
serves a 100% attack success rate. In other words, even
if the training procedure only utilizes a small subset of all
possible rendered images, the entire testing dataset can still
be misclassified on Inception v3. Furthermore, if a 100%
multiview attack success rate is not needed, we can greatly
reduce the amount of computation time by choosing a very
small training dataset, e.g. setting ptrain = 10. This im-
plies a training dataset of only 648 images (1% of rendered
images are used in training), but it still yields an extremely
high attack success rate of more than 99%, allowing users to
quickly generate the 3D adversarial examples. Note that we
still ensure the training dataset is fully adversarial in train-
ing.

3.4. Results on Other Models

Our approach is generalizable to a diverse set of 3D mod-
els. In our experiments, in total we have five lifelike models,
corresponding to the following 4 ImageNet labels: running
shoes (grey and black respectively), a pineapple, a power
drill, and a teddy bear (Figures 2 and 4.)

We perform the same experiments in Section 4.3 on the
other four models, and results are shown in Figure 4. With a
small ptrain = 3 corresponding to a larger training dataset,
all four models reach an attack success rate greater than
99%, and with a smaller training dataset ptrain = 10, three
models (black running shoe, pineapple, power drill) retain a



InitialFNR Iter# Inception AlexNet VGG ResNet SqueezeNet DenseNet GoogLeNet ShuffleNet MobileNet RetNeXt Wide ResNet MNASNet
Inception [20] 34.94 19 100 93.1481 99.9429 99.8349 99.8194 98.7145 97.7485 99.3148 99.983 99.9012 98.4614 100
AlexNet [9] 35.69 15 92.4352 99.9738 94.7083 96.1821 97.821 78.9907 91.3536 97.8565 96.6821 87.966 84.3241 99.2901
VGG [17] 30.20 8 83.3951 50.8272 99.9923 83.1235 82.5525 68.4784 79.0864 69.6265 95.0818 81.0031 63.8735 96.2716
ResNet [4] 47.33 10 92.6373 70.091 97.9429 99.9969 98.7515 94.1034 91.216 96.321 98.7392 97.213 90.7886 99.9506
SqueezeNet [7] 46.11 9 78.1651 60.9244 88.8426 87.6281 99.9969 63.179 80.8194 83.2901 88.1836 76.8812 57.1059 93.0864
DenseNet [6] 25.20 11 94.8287 66.1728 97.3951 98.3704 93.3843 99.9923 90.5694 95.2793 98.179 98.8843 94.608 99.9151
GoogLeNet [19] 46.90 8 98 85.8071 99.6806 99.2284 98.9522 98.3796 99.9969 98.8735 99.6852 99.3843 97.6003 99.9985
ShuffleNet [28] 38.31 10 87.1559 66.5633 87.6744 93.9336 93.2623 78.9954 86.3009 99.9923 95.4892 90.1204 78.5123 99.4182
MobileNet [5] 39.98 10 91.6698 62.7438 98.7454 94.0972 91.5802 84.6636 89.0664 89.6358 99.9985 93.1852 86.8333 99.9846
ResNeXt [25] 34.16 11 95.2901 66.608 98.4321 95.6713 93.3225 92.9043 90.5216 93.3287 98.0633 99.9815 96.0849 99.983
Wide ResNet [26] 23.37 14 98.1543 79.3858 98.6713 99.517 97.1698 97.9444 95.5617 97.8071 99.3395 99.3596 99.9691 99.9907
MNASNet [22] 55.62 6 74.9429 46.1358 84.125 79.6512 70.5787 62.9599 77.625 68.6682 92.3904 71.966 52.3997 99.9738

Table 1. Attack success rates of multiview robust 3D adversarial examples on different deep learning models. Each row indicates the deep
model based on which the 3D adversarial example is generated. The column names indicate different target deep learning models. The
data unit is %.

Figure 3. Plot of attack success rate versus ptrain. The number of
images used for adversarial training is completely determined by
ptrain but is also shown for convenience.

(A) Black
Running Shoe (B) Pineapple (C) Power Drill (D) Teddy Bear

Attack Success Rate
(Sampling Ratio: Ptest = 1, Unit : %)

Models Label in
ImageNet

Initial False
Negative Rate

Training with
Ptrain = 3

Training with
Ptrain = 10

A 770 34.7886 100 99.0401
B 953 8.7515 99.9877 99.8889
C 740 22.9614 99.9923 99.7716
D 850 10.1698 99.9352 81.8981

Figure 4. Four models are listed with their ImageNet labels. The
right of each model lists the testing results on training with p = 3
and p = 10 respectively.

false negative rate of more than 99%. The adversarial Teddy
Bear model obtains 81.90% attack success rate.

3.5. Results on Black-Box Attacks

All the experiments so far are conducted against the In-
ception v3 model. In this section, we perform a set of black-
box attacks on various deep learning models, in order to test
the transferability of the perturbation effectiveness of our

3D adversarial attacks.
We select 12 popular deep learning models with dissim-

ilar architectures, and conduct experiments on the gray run-
ning shoe model. We first collect the initial false negative
rates (misclassification rates) of different classifiers on the
original gray running shoe model. Then for every deep
learning model, we generate a 3D adversarial example and
found that no model requires more than 19 iterations in Al-
gorithm 1 to obtain a fully adversarial training dataset when
ptrain = 10. Using each 3D adversarial example created
based on one particular learning model, we launch attacks
on the other remaining 11 models, and measure the attack
success rates. Table 1 shows that there is a high transferabil-
ity of perturbations, agreeing with previous research [11].
Specifically, our multiview robust 3D model created based
on Inception v3 preserves attack success rate at above 93%
on all the other deep learning models. The attack success
rates on the other models show similar results. Therefore,
our 3D adversarial attacks remains effective in the black-
box setting.

4. Conclusion

In this paper we propose an approach to generate 3D
adversarial models that can achieve 100% attack success
rate from any viewpoints with integer spherical coordinates.
Our approach is simple and realistic, as we perturb only the
texture space. We find that even with only a small portion of
2D images in the training process, we can still achieve close
to 100% attack success rates. Our extensive experiments in-
cluding black-box tests have shown the effectiveness of our
approach and the perturbation has very good transferability.
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