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Abstract

Auxiliary Classifier GANs (AC-GANs) [14] are widely
used conditional generative models and are capable of
generating high-quality images. Previous work [17] has
pointed out that AC-GAN learns a biased distribution. To
remedy this, Twin Auxiliary Classifier GAN (TAC-GAN) [4]
introduces a twin classifier to the min-max game. However,
it has been reported that using a twin auxiliary classifier
may cause instability in training. To this end, we propose an
Unbiased Auxiliary GANs (UAC-GAN) that utilizes the Mu-
tual Information Neural Estimator (MINE) []] to estimate
the mutual information between the generated data distri-
bution and labels. To further improve the performance, we
also propose a novel projection-based statistics network ar-
chitecture for MINE. Experimental results on three datasets,
including Mixture of Gaussian (MoG), MNIST []1] and CI-
FARI0 [10] datasets, show that our UAC-GAN performs
better than AC-GAN and TAC-GAN.

1. Introduction

Generative Adversarial Networks (GANSs) [5] are gen-
erative models that can be used to sample from high di-
mensional non-parametric distributions, such as natural im-
ages or videos. Conditional GANSs [12] is an extension of
GAN:Ss that utilize the label information to enable sampling
from the class conditional data distribution. Class condi-
tional sampling can be achieved by either (1) conditioning
the discriminator directly on labels [12, 8, 13], or by (2) in-
corporating an additional classification loss in the training
objective [14]. The latter approach originates in Auxiliary
Classifier GAN (AC-GAN) [14].

Despite its simplicity and popularity, AC-GAN is re-
ported to produce less diverse data samples [17, 13]. This
phenomenon is formally discussed in Twin Auxiliary Clas-
sifier GAN (TAC-GAN) [4]. The authors of TAC-GAN re-

veal that due to a missing negative conditional entropy term
in the objective of AC-GAN, it does not exactly minimize
the divergence between real and fake conditional distribu-
tions. TAC-GAN proposes to estimate this missing term by
introducing an additional classifier in the min-max game.
However, it has also been reported that using such twin aux-
iliary classifiers might result in unstable training [9].

In this paper, we propose to incorporate the negative
conditional entropy in the min-max game by directly esti-
mating the mutual information between generated data and
labels. The resulting method enjoys the same theoretical
guarantees as that of TAC-GAN and avoids the instability
caused by using a twin auxiliary classifier. We term the
proposed method UAC-GAN because (1) it learns an Un-
biased distribution, and (2) MINE [1] relates to Unnormal-
ized bounds [15]. Finally, our method demonstrates supe-
rior performance compared to AC-GAN and TAC-GAN on
1-D mixture of Gaussian synthetic data, MNIST [1 1], and
CIFAR10 [10] dataset.

2. Related Work

Learning unbiased AC-GANSs. In CausalGAN [9], the au-
thors incorporate a binary Anti-Labeler in AC-GAN and
theoretically show its necessity for the generator to learn the
true class conditional data distributions. The Anti-Labeler
is similar to the twin auxiliary classifier in TAC-GAN, but
it is used only for binary classification. Shu et al. [17] for-
mulates the AC-GAN objective as a Lagrangian to a con-
strained optimization problem and shows that the AC-GAN
tends to push the data points away from the decision bound-
ary of the auxiliary classifiers. TAC-GAN [4] builds on
the insights of [17] and shows that the bias in AC-GAN is
caused by a missing negative conditional entropy term. In
addition, [4] proposes to make AC-GAN unbiased by intro-
ducing a twin auxiliary classifier that competes in an adver-
sarial game with the generator. The TAC-GAN can be con-
sidered as a generalization of Causal GAN’s Anti-Labeler to



the multi-class setting.

Mutual information estimation. Learning a twin auxil-
iary classifier is essentially estimating the mutual informa-
tion between generated data and labels. We refer readers to
[15] for a comprehensive review of variational mutual in-
formation estimators. In this paper, we employ the Mutual
Information Neural Estimator (MINE) [1].

3. Background
3.1. Bias in Auxiliary Classifier GANs

First, we review the AC-GAN [14] and the analysis in [4,

] to show why AC-GAN learns a biased distribution. The
AC-GAN introduces an auxiliary classifier C and optimizes
the following objective
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where (@) is the value function of a vanilla GAN, and (b)
(© correspond to cross-entropy classification error on real
and fake data samples, respectively. Let Qg,‘  denote
the conditional distribution induced by C. As pointed out
in [4], adding a data-dependent negative conditional entropy
—Hp(Y|X) to (® yields the Kullback-Leibler (KL) diver-
gence between Py | x and Qi/‘ e

—H(Y[X) + ® = Ezwpy Dxi (Py x |QYx)- (D)

Similarly, adding a term —Hg(Y']X) to (© yields the KL-
divergence between Qy | x and Qg"/‘ x>
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As illustrated above, if we were to optimize 2 and 3, the
generated data posterior Qy|x and the real data posterior
Py x would be effectively chained together by the two KL-
divergence terms. However, Hg(Y'|X) cannot be consid-
ered as a constant when updating G. Thus, to make the
original AC-GAN unbiased, the term —Hg(Y|X) has to
be added in the objective function. Without this term, the
generator tends to generate data points that are away from
the decision boundary of C, and thus learns a biased (de-
generate) distribution. Intuitively, minimizing —Hq (Y'|X)
over G forces the generator to generate diverse samples with
high (conditional) entropy.

3.2. Twin Auxiliary Classifier GANs

Twin Auxiliary Classifier GAN (TAC-GAN) [4] tries to
estimate Hq(Y'|X) by introducing another auxiliary clas-

sifier C™. First, notice the mutual information can be de-
composed in two symmetrical forms,

1o(X;Y) = H(Y) = Ho(Y[X) = Ho(X) — Ho(X]Y).

Herein, the subscript ) denotes the corresponding distribu-
tion ) induced by G. Since H(Y") is constant, optimizing
—Hg(Y|X) is equivalent to optimizing I (X;Y). TAC-
GAN shows that when Y is uniform, the latter form of
Iq can be written as the Jensen-Shannon divergence (JSD)
between conditionals {Qx|y—=1,...,Qx|y=k}. Finally,
TAC-GAN introduces the following min-max game

i Vi cm™) =
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to minimize the JSD between multiple distributions. The
overall objective is

min max Ltac(G,D,C,C™) = Lac + Viac.  (5)
g,Cc D,Cmt N~
@

3.3. Insights on Twin Auxiliary Classifier GANs

TAC-GAN from a variational perspective. Training the
twin auxiliary classifier minimizes the label reconstruction
error on fake data as in InfoGAN [2]. Thus, when opti-
mizing over G, TAC-GAN minimizes a lower bound of the
mutual information. To see this,
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The above shows that @ is a lower bound of —Hg (Y| X).
The bound is tight when classifier C™* learns the true pos-
terior Qy|x on fake data. However, minimizing a lower
bound might be problematic in practice. Indeed, previous
literature [9] has reported unstable training behavior of us-
ing an adversarial twin auxiliary classifier in AC-GAN.

TAC-GAN as a generalized CausalGAN. A binary ver-
sion of the twin auxiliary classifier has been introduced as
Anti-Labeler in CausalGAN [9] to tackle the issue of label-
conditioned mode collapse. As pointed out in [9], the use
of Anti-Labeler brings practical challenges with gradient-
based training. Specifically, (1) in the early stage, the Anti-
Labeler quickly minimizes its loss if the generator exhibits
label-conditioned mode collapse, and (2) in the later stage,
as the generator produces more and more realistic images,
Anti-Labeler behaves more like Labeler (the other auxiliary



classifier). Therefore, maximizing Anti-Labeler loss and
minimizing Labeler loss become a contradicting task, which
ends up with unstable training. To account for this, Causal-
GAN adds an exponential decaying weight before the Anti-
Labeler loss term (or (d) in 5 when optimizing G). In fact,
the following theorem shows that TAC-GAN can still in-
duce a degenerate distribution.

Theorem 1. Given fixed C and C™, the optimal G*
that minimizes (©) + @) induces a degenerated conditional

Qy|x = onehot(arg min,, %:kﬂx))) where Qg,”fx is
the distribution specified by C™.

Proof. If G learns the true conditional, and C and C™ are
both optimally trained so that Q% x = Q’Qﬁx = Pyx,
then (© + (@ = 0 and the game reaches equilibrium.

If Q§,l + and Q%ix are not equal (and Q§,l + has non-
zero entries),
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The minimizing (¢) + (@) is equivalent to minimizing the
objective point-wisely for each x,
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where r,, is the log density ratio between Q™ and Q°. Then
the optimized Q;‘  1s obtained by noticing that
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4. Method

To develop a better unbiased AC-GAN while avoiding
potential drawbacks by introducing another auxiliary clas-
sifier, we resort to directly estimate the mutual information
Io(X;Y). In this paper, we employ the Mutual Informa-
tion Neural Estimator (MINE [1]).

4.1. Mutual Information Neural Estimator

The mutual information I(X;Y") is equal to the KL-
divergence between the joint () xy and the product of the

marginals Q) x ® Qy (here we denote )y = Py for a con-
sistent and general notation),

Io(X;Y) = Dxi(Qxvy [ @x ® Qy). (7
MINE is built on top of the bound of Donsker and Varadhan
[3] (for the KL-divergence between distributions P and @),
Dk (P||Q) = sup Ep[T] —logEqle”],  (8)
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where T is a scalar-valued function which takes samples
from P or () as input. Then by replacing P with ) xy and
replacing @ with Qx ® Qy, we get
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The function 7 : X x Y — R is often parameterized by a
deep neural network.

4.2. Unbiased AC-GAN with MINE

The overall objective of the proposed unbiased AC-GAN

is,

minmax Lyac(G,D,C, T) = Lac + VMINE- (10)
Note that when the inner 7 is optimal and the bound is
tight, Visnne(G, 7) recovers the true mutual information
Io(X;Y) = HY) — Ho(Y|X). Given that H(Y) is
constant, minimizing over the outer G maximizes the true
conditional entropy Hg (Y| X).

Implementation-wise, a projection-based network 7T
only adds at most an embedding layer (same as same as
a fully connected layer) and a single-class fully connected
layer (if replacing the LogSumExp function with a learnable
scalar function). Thus, UAC-GAN only adds a negligible
computational cost to AC-GANS.

AC-GAN TAC-GAN UAC-GAN
Class_0 0.234 £ 0.054 0.077 £0.091 0.085 £ 0.172
Class_1 4.825 + 1.883 0.459 £0.359  0.148 + 0.274
Class_2 527.801 £65.174 2.772 £2.508 0.760 + 1.474
Marginal ~ 52.348 £9.660  0.351 £0.779  0.185 & 0.494

Table 1: MMD distance of 1-D mixture of Gaussian ex-
periment, lower is better. UAC-GAN matches distributions
better than TAC-GAN except for Class_0.

S. Experiments

We borrow the evaluation protocol in [4] to compare
the distribution matching ability of AC-GAN, TAC-GAN,
and our UAC-GAN on (1-D) mixture of Gaussian synthetic
data. Then, we evaluate the image generation performance
of UAC-GAN on MNIST [11] and CIFAR10 [10] dataset.



(a) Target Distribution (b) AC-GAN

(c) TAC-GAN (d) UAC-GAN

Figure 1: Results on 1-D mixture of Gaussian dataset. The generated data points in (b) are well-separated, which clearly
illustrates how AC-GAN learns a biased conditional distribution.
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Figure 2: Results on MNIST (a-c) and CIFAR10 (d-f) dataset. Samples are drawn from a single class “2” (a-c) and “horse”

(d-f) to illustrate the label-conditioned diversity.

MNIST CIFAR10
Method IST FIDJ] |IST FIDJ
AC-GAN 252 417 | 471 4775
TAC-GAN 260 370 | 417 5491
UAC-GAN (ours) 2.68 3.68 | 4.92 43.04

Table 2: Inception Scores (IS) and Fréchet Inception Dis-
tances (FID) on MNIST and CIFAR10 dataset.

5.1. Mixture of Gaussian

The 1-D mixture of Gaussian (MoG) experiment is
shown in Figure 1. The MoG data is sampled from three
Gaussian components, A (0,1), N (3,2), and N (6, 3), la-
beled as Class_0, Class._1, and Class_2, respectively.
The estimated density is obtained by applying kernel den-
sity estimation as used in [4], and the maximum mean dis-
crepancy (MMD) [6] distances are reported in Table 1. As
shown, in most cases (except for Class_0), UAC-GAN
outperforms TAC-GAN and is generally more stable across
different runs.

5.2. MNIST and CIFAR10

Table 2 reports the Inception Scores (IS) [16] and Fréchet
Inception Distances (FID) [7] on the MNIST and CIFAR10
datasets. To visually inspect whether the model exhibits
label-conditioned mode collapse, we condition the gener-
ator on a single class. Samples are shown in Figure 2. It is
obvious to conclude from the image samples that the pro-
posed UAC-GAN generates more diverse images; more-
over, as demonstrated in quantitative evaluations, UAC-
GAN outperforms AC-GAN and TAC-GAN.

6. Conclusion

In this paper, we reviewed the low intra-class diversity
problem of the AC-GAN model. We analyzed the TAC-
GAN model and showed in theory why introducing a twin
auxiliary classifier may cause unstable training. To address
this, we proposed to directly estimate the mutual informa-
tion using MINE. The effectiveness of the proposed method
is demonstrated by a distribution matching experiment and
image generation experiments on MNIST and CIFAR10.
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