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Abstract

A critical aspect of autonomous vehicles is the object de-
tection stage, which is increasingly being performed with
what are called sensor fusion models: 3D object detec-
tion models which take in both 2D RGB image data and
3D depth data (like from a LIDAR sensor) as inputs. How-
ever, while there has been lots of work on the performance
of these models, their security, particularly against adver-
sarial examples, has not yet been explored.

In this work, we perform the first preliminary study to
analyze the robustness of a popular sensor fusion model ar-
chitecture towards adversarial attacks. We find that despite
the use of the 3D data, simply modifying the image via our
raw-pixel attack is enough to fool the model and cause ob-
jects to disappear. We picked 28 random samples with 119
vehicles from the KITTI dataset and show that our raw pixel
disappearance attack is able to generate successful adver-
sarial examples against 133 of those images. We extend this
attack and develop a modified algorithm to create general-
izable adversarial patches that can fool multiple vehicles.
To better understand this performance against adversarial
examples, we run experiments that show the model learns
to rely on the LIDAR input more than the image input, sug-
gesting the image input can prove to be an ”Achilles’ heel”
against adversarial examples.

1. Introduction
Autonomous vehicle manufacturers often use sensor fu-

sion models to help the vehicles detect the environment
around them. These types of models are 3D object detec-
tion models that take in two types of inputs: a 2D image
from a camera and 3D depth data usually from a LIDAR
sensor. With the growing proliferation of autonomous vehi-

cles, their security is becoming more paramount, especially
against adversarial examples.

It has long been known in the community that machine
learning models are vulnerable to adversarial examples, ma-
liciously crafted inputs designed to intentionally fool the
model into outputting an erroneous result. Adversarial ma-
chine learning techniques have been applied extensively to
create attacks on image classification and 2D object detec-
tion models. However, it is unclear how robust a 3D object
detection model is to such techniques.

While recent work [6] has shown theoretically that mod-
els that take in multiple inputs are still vulnerable to po-
tential perturbations in a single input, no one has actively
explored the robustness and crafted adversarial examples
against sensor fusion models. We design new techniques
to craft adversarial examples on sensor fusion models. We
then investigate some defenses and attempt to explain why
the model is susceptible to these attacks.

The model we chose for our study is AVOD, [7] an open-
source 3D object detection model that performs well on the
KITTI benchmark. Furthermore, its two stage detector net-
work architecture is one that is typical of sensor fusion mod-
els, making it an ideal candidate for our study. Our key
contributions are as follows:

• We perform the first study of adversarial examples on
sensor fusion models. We show that existing tech-
niques for attacks on image classification and 2D ob-
ject detection models are not directly transferable. We
modify these attacks to show that sensor fusion mod-
els are vulnerable to adversarial attacks that modify
just the image input. These attacks include the raw
pixel disappearance attack which achieves a 94.92%
accuracy in causing objects to disappear. We show that
these adversarial examples are able to resist basic de-
fenses.
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Figure 1. Results of some of our raw-pixel attacks. The left images are outputs for normal, benign images. The first value corresponds
to the classification confidence and the second value corresponds to the IOU with the ground truth bounding box. The right images show
the corresponding adversarial images. Note that our attack works in deleting any number of objects, whether they are in the foreground or
background.

• We show that despite the symmetric architecture, the
model frequently leans heavily on the LIDAR input to
detect obstacles .

2. Related Work
2.1. Attacks on 2D Object Detection

There has been lots of work involved in 2D object de-
tection models. These range from attacks in the raw pixel
space [9] to launching these attacks in the physical world
[4, 5, 11].

We draw inspiration from these techniques when attack-
ing the 3D object detection model. However, some of this
work is not directly transferable and so we modify the at-
tacks to fit this model.

2.2. Attacks on 3D Object Detection

Existing work attacking 3D object detection models have
largely been aimed at attacking models that solely use point
cloud data [2, 8]. However, in the physical space it is more
difficult to launch an attack to fool the LIDAR sensor. For
this reason, we are motivated to look into attacks that solely
modify the image, as as this type of attack is much easier
for an adversary to perform.

3. Threat Model
We will assume that the adversary is a white-box at-

tacker, having full access to the model. Despite this, we
limit the adversary to modification of just the image for two
reasons. First, we are better able to leverage existing work
in the adversarial image space. Second, an attack through
modification of just the image is much easier to carry out in
the real world than an attack that requires modifications to

the LIDAR sensor. Thus, by restricting attacks to just im-
ages, we are assuming a less powerful and more realistic at-
tacker. Finally, we add another restriction that the adversary
will not be able to modify the model in any way, including
any post-processing steps, like non-maximum suppression
(NMS).

4. Disappearance Attack
The first attack we developed, which we call the raw-

pixel disappearance attack, tries to fool the model into not
detecting an object it had previously detected. As stated
in the threat model, we limit the adversary to modifying
just the image. In order to make our attack more realistic,
we have also disallowed the adversary from looking at any
values before any post-processing steps.

To cause the desired object to disappear, we must remove
all potential bounding boxes around said object. Removing
a bounding box can be done by forcing the output softmax
probability of an object to fall below the detection threshold.

We will call the set of all potential boxes that we need
to attack B. More concretely, suppose we have image w
and add adversarial noise δ. For ease of notation, suppose
C(w, b) ∈ Rc denotes the output classification logits of
bounding box b on image w and C(w) outputs the logits
for all the potential bounding boxes of image w in decreas-
ing order according to softmax score - in other words, the
first element of C(w) is the bounding box with the highest
confidence. To minimize the score, we will then try to find

argminδ
∑
b∈B

C(w + δ, b)

Since we wish to make the perturbation to the image as
small as possible, we add another element as suggested by



Figure 2. Output of experiment in which we switched LIDAR and image inputs. The two images on the left show the normal output for
benign inputs. The two right images show the output when the LIDAR for one is switched for the other (and vice versa). Note that the
model output follows the LIDAR more than the image.

the CW attack [3]: D(w + δ, w) which measures the L2

norm between the adversarial image and the regular image.
Thus, the final loss function L(.) that we are trying to

minimize becomes:

L(w + δ,B) = ε ∗
∑
b∈B

F (C(w + δ, b)) +D(w + δ, w)

F (.) represents use of the softmax and ε is used to weigh
one value versus the other. The optimal value of ε is found
through binary search.

There lies an additional challenge in the fact that due to
NMS and the restrictions we set on the adversary, not all of
the elements of B will be visible. In other words, for some
bounding boxes b, C(w, b) is not existent and the logits will
not be visible.

Algorithm 1: Raw-pixel attack
input : Raw image w, k
output: Adversarial noise δ
begin

δ ← 0
while Object is still detected do

B′ ← C(w + δ)[0, ..., k];
δ ← argminδL(w + δ)

end
return δ

end

To overcome this, we modify the algorithm to greedily
attack the top confidence bounding box. The reasoning be-
hind this algorithm is that as we keep trying to lower the
confidence of the bounding box with the highest score, one
of two outcomes will happen. In one, the object in ques-
tion will no longer be detected, in which case our attack
goal is accomplished. In the other case, the bounding box

in question will be removed via NMS and the next top-score
bounding box will appear and the process can be repeated.

This naive process will remove all objects present in an
image, but an adversary can selectively remove certain ob-
jects by applying a mask. In this case, the objective function
needs to be modified to attack the top k bounding boxes si-
multaneously. The full algorithm is shown as Algorithm 1.

4.1. Evaluation and Results

To test the attack, we utilized an instance of AVOD that
identifies vehicles and trained to match the results stated in
the original paper. We then choose 27 random samples con-
taining a total of 119 detected objects and tried constructing
adversarial examples using the method stated above. We are
able to cause 113 objects to disappear, resulting in a 94.92%
success rate.

To investigate if objects at different distances differ in the
amount of distortion required, we create categories based on
how far the vehicles are from the camera. Vehicles with an
area of fewer than 3000 pixels are considered in the back-
ground, those containing between 3000 and 40000 pixels
are considered in the middle ground, and any larger vehicles
are considered foreground vehicles. Unsurprisingly, we find
that vehicles in the foreground require more distortion than
vehicles in the background. To normalize this, we divide
the L2 norm by the area of the vehicle we are targeting. We
find that there is not a statistically significant difference in
the amount of distortion in this normalized L2 norm space
needed to mount a successful attack for the different cate-
gories.

4.2. Towards Physical Realization

After the success of the raw pixel attack, we aimed to
create an attack that is generalizable over many inputs. We
drew inspiration from the expectation over transformation
(EOT) algorithm [1]. In the case of the KITTI dataset how-



Experiment mAP score (Std. Deviation)
Baseline 72.76 (0.61)
Mask Img (0) 59.52 (0.58)
Mask Img (125) 40.08 (0.51)
Mask Img (255) 25.11 (0.92)
Mask LIDAR (0) 0.002 (0.001)

Table 1. The mean AP scores on ”moderate” difficult based on
masking different inputs. Note that masking the LIDAR input has
a much greater effect than masking the image.

ever, it is very difficult to apply any transformation to an
image and also properly modify the corresponding LIDAR
data. Furthermore, we also have to overcome the model’s
lack of support for batching. Therefore, we decided to use
different object samples available in KITTI instead. We
also modified the algorithm to run sequentially rather than
in parallel. Preliminary results are promising; however, we
are still running experiments to ensure the technique works
for different images.

5. Defenses
In this section, we analyze the use of possible defenses

against our attack. We consider in this section feature
squeezing as a potential defense. This technique was first
introduced by Xu et al [10]. In short, they propose a defense
to ”squeeze” the features of the image into a low-fidelity
version. One of the methods proposed is bit reduction, in
which the number of bits used to encode the image is re-
duced. We chose this defense because it is a simple add-on
defense that does not harm accuracy too much. While the
original model has a 3D AP score of 73, we find that the
extreme act of squeezing the image input into just 2 bits
drops the score to 67.65. A similar result was found when
we trained two new versions of the model. We believe the
reason for this is that the model has learned to use LIDAR
input more heavily than the image input. We explore this
further in Section 6.

To consider if this defense is effective, we applied this
defense on all the adversarial examples constructed in Sec-
tion 4. We consider the adversarial example to be stopped
if the vehicle is identified with over a 10% confidence and
with an IOU of over 0.5 with the ground truth. We find that
the defense is able to recover only 46 out of 81 adversarial
examples (a 56.79% rate). If the objects are recovered how-
ever, the outputted bounding box is often correctly located.

6. Analysis of Sensor Input
Motivated by the results of our experiments on the at-

tacks and defenses, we suspect that the model architecture,
while symmetrical, heavily utilizes the LIDAR sensor in-
put over the image. To test this, we ran an ablation study

on five models in which we masked out one input and then
another. To mask the image, we ran each instance of the
model three times, filling the image with a value of 0, 125,
or 255. To mask the LIDAR, we utilized a value of 0. The
mean AP scores for the various experiments are shown in
Table 1. The LIDAR drops performance of the model far
more than masking the image, suggesting that the LIDAR
is utilized more heavily than the image.

6.1. Switching Inputs

For the second set of experiments, we randomly used the
LIDAR from one sample and the image for another. This
was done for 30 random samples, swapping the image of
one and the LIDAR of another. This experiment helps give
an insight of how the model performs when the image and
the LIDAR are at odds with each other. Some of the results
are shown in Figure 2.

For the sake of simplicity, we considered a sample as
”correct” if the bounding box was correctly drawn accord-
ing to the LIDAR sensor. We find that out of 107 poten-
tial objects, 81 were identified correctly despite having con-
flicting images. Among the 30 samples, there were 7 ad-
ditional bounding boxes that did not correspond to any LI-
DAR bounding box. However, among these, only 2 were
drawn correctly around the vehicle in the image space.

All this suggests that the use of image in this architec-
ture proves to be an ”Achilles’ heel”. While most of the
detection of an object is done using the LIDAR input, a
well-crafted image input can override this, thus providing
an avenue for adversaries to attack and fool the model.

7. Conclusion

In this work we explore sensor fusion models’ security
against adversarial examples. We pick a popular architec-
ture and craft adversarial examples on the image input that
can cause objects to disappear. We also show that the 3D
depth data input is more heavily used in the model than the
image input.

This also helps explain our preliminary findings that sug-
gest making an obstacle appear is more difficult than caus-
ing it to disappear. For the future, we are currently eval-
uating all results on different iterations of the model to
strengthen our findings, including testing for how well our
adversarial examples transfer from one model to another.
We are also investigating algorithms to create more robust
adversarial examples that are able to fool different orien-
tations of cars and can lead to physical real-world attacks.
Finally, we are designing techniques to attempt to attack
a black-box model in which no internal workings of the
model are known to the adversary.
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